摘要
心肺性职业病是目前深受人们重视的慢性职业病之一。首先对心肺性职业病的原因、症状、现社会中的治疗状况进行了调研;然后概要介绍了数据挖掘的过程和挖掘平台,详细介绍了关联规则Apriori挖掘算法和数据挖掘过程,通过向Hadoop平台导入真实心肺性职业病科患者的病历数据,对规范化的患者病症、病人住院信息等进行分析;最后,对本次的挖掘分析结果进行总结,针对挖掘结果做出本病种的相关预测。
Cardiopulmonary occupational disease is currently one of the chronic occupational disease by people attention. Plrsuy, this paper research the cardiopulmonary disease causes, symptoms, now did on treatment of society. Then outlined the process of data mining and mining platform, introduced the Apriori association rule mining algorithm and the data mining process, through to the Hadoop platform import real cardiopulmonary occupational disease patient's medical record data, analysis the canonical patients' symptoms and hospital information. Finally, summarized the results of the analysis of the mining, in view of the mining results to make this kind of prediction.
出处
《中国数字医学》
2017年第4期68-70,78,共4页
China Digital Medicine
基金
国家自然科学基金项目(编号:61572268
61303193)
山东省自然科学基金项目(编号:2011ZRB01172)~~
关键词
数据挖掘
医疗大数据
心肺性职业病
关联规则
data mining, medical big data, cardiopulmonary occupational disease, asocciation rules