期刊文献+

基于氧化石墨烯修饰玻碳电极的多巴胺和尿酸的电化学检测 被引量:5

Electrochemical Detection of Dopamine and Uric Acid Based on Graphene Oxide Modified Glassy Carbon Electrode
下载PDF
导出
摘要 将超声分散的氧化石墨烯(GO)悬浮液滴涂于玻碳电极(GCE)表面,制备成GO/GCE,并用扫描电子显微镜(SEM)和电化学阻抗谱(EIS)对GO/GCE进行表征,利用差分脉冲伏安法(DPV)、循环伏安法(CV)对多巴胺(DA)和尿酸(UA)进行了电化学测定。研究了pH对DA和UA电化学行为的影响并计算相关的动力学参数。结果表明:该修饰电极对DA和UA的氧化还原反应具有良好的电化学催化作用,在1.0~98.0μmol/L和0.5~90.0μmol/L范围内峰电流与DA和UA浓度呈良好的线性关系,检出限分别为0.50μmol/L和0.25μmol/L。而且可以在抗坏血酸(AA)共存下同时测定DA和UA。该传感器具有良好的选择性与稳定性,有望应用于DA和UA的同时测定。 The graphene oxide(GO)modified glassy carbon electrode(GO/GCE)was prepared by casting sonicated graphene oxide dispersion on the surface of glassy carbon electrode(GCE),which was characterized by scan electron microscopy(SEM)and electrochemical impedance spectroscopy(EIS).Differential pulse voltammetry(DPV)and cyclic voltammetry(CV)were employed to detect dopamine(DA)and uric acid(UA).The effects of pH on the behaviors of DA and UA were studied and related kinetic parameter was calculated.Results indicated that the GO/GCE could catalyze the redox reaction of DA and UA.The DPV peak currents were liner with concentrations of DA and UA in the range of 1.0-98.0μmol/L and 0.5-90.0μmol/L,and the detection limits were 1.0μmol/L and 0.25μmol/L,respectively.Furthermore DA and UA can be simultaneously detected without interference of ascorbic acid(AA).The presented sensor has excellent selectivity and stability,which is expected to be applied to detect DA and UA in real samples.
出处 《分析科学学报》 CSCD 北大核心 2017年第2期232-236,共5页 Journal of Analytical Science
基金 国家自然科学基金(No.21405019) 安徽省自然科学基金(No.1408085QB39) 安徽省大学生创新创业训练计划(No.201510371032) 安徽省高校优秀青年人才支持计划重点项目(No.gxyqZD2016193)
关键词 氧化石墨烯修饰电极 多巴胺 尿酸 Graphene oxide modified electrode Dopamine Uric acid
  • 相关文献

参考文献6

二级参考文献209

  • 1张雷,卢英俊,邓同乐,郑筱祥.高效液相色谱-荧光检测流速梯度法测定去卵巢小鼠脑内单胺类神经递质[J].色谱,2005,23(1):76-78. 被引量:21
  • 2孙登明,田相星,马伟.分析化学,2010,38(12):1742.
  • 3Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, 1. V.; Firsov, A. A. Science 2004, 306, 666.
  • 4Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
  • 5Alwarappan, S.; Erdem, A.; Liu, C.; Li, C.-Z. J. Phys. Chem. C 2009, 113, 8853.
  • 6Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321,385.
  • 7Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.
  • 8Huang, X.; Zeng, Z.; Fan, Z.; Liu, J.; Zhang, H. Adv. Mater. 2012, 24, 5979.
  • 9Huang, C.; Li, C.; Shi, G. Energy Environ. Sci. 2012, 5, 8848.
  • 10Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Angew. Chem., Int. Ed. 2010, 49, 2114.

共引文献56

同被引文献54

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部