摘要
将欧式空间中经典的Brouwer不动点定理推广到了Heisenberg群H^n上,主要定理可叙述为:设f:B_H→B_H∩H_ξ是光滑映射,则f在B_H∩H_ξ中必有不动点,其中B_H为H^n中的单位闭球,H_ξ是过ξ∈B_H的水平平面.
In this paper,the classical Brouwer fixed point theorem in Euclidean space is generalized to the Henberg group Hn.The main result is as follows:If f:BH→BH∩Hξ is a smooth mapping,there exists a fixed point in BH∩Hξ,where Bn is a Koranyi unit closed ball,and Hξ is a horizontal plane through a point ξ∈BH.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2017年第2期1-5,共5页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金(61373174)
咸阳师范学院专项科研科研基金项目(06XSYK283)