期刊文献+

基于激光雷达的道路可行区域检测 被引量:12

Drivable Road Regions Detection Based on LiDAR
下载PDF
导出
摘要 针对无人驾驶智能车道路检测问题,基于单线激光雷达的路面可行区域提取方法.依据激光雷达扫描点在可行路面的连续性,首先用相邻扫描点间的欧氏距离对点聚类,然后用加权移动平均值对每类点平滑滤波,再利用斜率将数据点分割成多段近似直线段,用最小二乘法对线段进行拟合.最后根据线段的斜率和长度、高程信息从多条线段中选取可行路面.实验结果证明,算法可以实时有效的从激光雷达扫描点中提取路面可行区域. A drivable road regions detection method is proposed to identify the characteristics of the road for unmanned intelligent vehicles, which is mainly according to the continuity of LiDAR data on the road. First, the points are clustered by the distance between adjacent scanning points and using weighted moving average filter to smooth the points of each cluster. Then, the points are divided into several approximately straight line segments based on the slope from fitting a few consecutive points with the least square method, using the least square fitting line segments to obtain the slope of these line segments. Finally, the passable regions are selected from those line segments by means of their slope, length and elevation. Experimental results demonstrate that the proposed method provides real-time and reliable detection performance.
出处 《武汉理工大学学报(交通科学与工程版)》 2017年第2期203-207,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目资助(51405359)
关键词 可行驶区域 激光雷达 聚类 平滑滤波 最小二乘拟合 drivable road regions LiDAR cluster least square fitting
  • 相关文献

参考文献5

二级参考文献62

  • 1赵于前,王小芳,李桂源.基于多尺度多结构元素的肝脏图像分割[J].光电子.激光,2009,20(4):563-566. 被引量:12
  • 2蒋运辉,皮亦鸣.基于Hough变换和遗传算法的SAR图像道路检测[J].雷达科学与技术,2005,3(3):156-162. 被引量:4
  • 3禹晶,段娟,苏开娜.一种基于Hough变换的步态特征提取方法的研究[J].中国图象图形学报,2005,10(10):1304-1309. 被引量:5
  • 4Chiu K Y, Lin S F. Lane detection using color-based segmentation. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Washington D. C., USA: IEEE, 2005. 706-711.
  • 5Azali S, Jason T, Hijazi M H A, Jumat S. Fast lane detection with randomized hough transform. In: Proceedings of the Information Symposium on Information Technology. Kuala Lumpur, Malaysia: IEEE, 2008. 1-5.
  • 6Meuter M, Muller-Schneiders S, Mika A, Hold S, Nunn C, Kummert A. A novel approach to lane detection and tracking. In: Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems. St. Louis, USA: IEEE, 2009. 1-6.
  • 7Banggui Z, Bingxiang T, Jianmin D, Dezhi G. Automatic detection technique of preceding lane and vehicle. In: Proceedings of the IEEE International Conference on Automation and Logistics. Qingdao, China: IEEE, 2008. 1370-1375.
  • 8Xu Jie, Li Xiao-Hu, Wang Rong-Ben, Shi Peng-Fei. Road edge detection technique for auto-navigation of vehicle. Journal of Image and Graphics. 2003, 8(6): 674-678.
  • 9Watanabe A, Naito T, Ninomiya Y. Lane detection with roadside structure using on-board monocular camera. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Xi'an, China: IEEE, 2009. 191-196.
  • 10Liu Fu-Qiang, Tian Min, Hu Zhen-Cheng. Research on vision-based lane detection and tracking for intelligent vehicles. Journal of Tongji University (Natural Science), 2007, 35(11): 1535-1541.

共引文献78

同被引文献128

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部