期刊文献+

Bernstein Bezout矩阵与可控制型/可观测型矩阵之间的联系 被引量:1

Connections between Bernstein Bezout Matrix and Generalized Controllability/Observability-type Matrices
下载PDF
导出
摘要 通过多项式标准幂基与Bernstein基之间的转换关系给出了经典Bezout矩阵与Bernstein Bezout矩阵之间的相互联系;同时,由标准线性控制系统中的可控制型/可观测型矩阵构造出Bernstein基下的线性控制系统理论中的(广义)可控制型/可观测型矩阵,并建立Bernstein Bezout矩阵与对应的(广义)可控制型/可观测型矩阵之间的联系,所得结果和标准幂基下的有关结果是平行的. The relationships between the classical Bezout matrix and Bernstein Bezout matrix are given transformation matrix of the standard power basis and Bernstein polynomial basis. Meanwhile, a control system for the Bernstein polynomial basis is established from the controllability/observability-type matrices is constructed correspondingly Bezout matrix and generalized controllability/observability-type matrices parallel to the previous ones for the standard power basis.
出处 《重庆工商大学学报(自然科学版)》 2017年第2期12-15,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 安徽省自然科学基金(1208085MA02) 安徽大学大学生科研训练项目(A01414110)
关键词 标准幂基 BERNSTEIN基 BEZOUT矩阵 BERNSTEIN BEZOUT矩阵 可控制型/可观测型矩阵 standard power basis Bemstein basis observability-type matrix generalized classical one, and a kind of by the linear generalized Finally, connections between Bernstein are discussed. The results obtained are Bezout matrix Bernstein Bezout matrix controllability/
  • 相关文献

参考文献1

二级参考文献8

  • 1BARNETT S.A Note on the Bezoutian Matrix[J].SIAM J Appl Math,1972(22);84-86.
  • 2YANG Z H,CUI B F.On the Bezoutian Matrix for Chebyshev Polynomials[J].Applied Mathematics and Computation,2012,219(3):1183-1192.
  • 3BARNETT S.Polynomials and Linear Control Systems[M].New York:Marcel Dekker,1983.
  • 4HELMKE U,FUHRMANN P A.Bezoutians,Linear Algebra and its Applications[J].1989,22(124);1039-1097.
  • 5LANCASTER P,ROST M.Algebraic Methods for Toeplitz-Iike Matrices and Operators[J].Operaror Theory,Bikhauser,Basel,1984(13):402-410.
  • 6GOVER M J,BARNETT S.A Generalized Bezoutian Matrix[J].Linear Multilinear Algebra,1990(27):33-48.
  • 7VLASTIMILt6k.Explicit Expressions for Bezoutians[J].Linear Algebra and its Applications,1984(59):43-54.
  • 8刘冰,张羽乾.Bernstein-Bezoutian矩阵的若干性质[J].重庆工商大学学报(自然科学版),2011,28(4):339-342. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部