摘要
通过多项式标准幂基与Bernstein基之间的转换关系给出了经典Bezout矩阵与Bernstein Bezout矩阵之间的相互联系;同时,由标准线性控制系统中的可控制型/可观测型矩阵构造出Bernstein基下的线性控制系统理论中的(广义)可控制型/可观测型矩阵,并建立Bernstein Bezout矩阵与对应的(广义)可控制型/可观测型矩阵之间的联系,所得结果和标准幂基下的有关结果是平行的.
The relationships between the classical Bezout matrix and Bernstein Bezout matrix are given transformation matrix of the standard power basis and Bernstein polynomial basis. Meanwhile, a control system for the Bernstein polynomial basis is established from the controllability/observability-type matrices is constructed correspondingly Bezout matrix and generalized controllability/observability-type matrices parallel to the previous ones for the standard power basis.
出处
《重庆工商大学学报(自然科学版)》
2017年第2期12-15,共4页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
安徽省自然科学基金(1208085MA02)
安徽大学大学生科研训练项目(A01414110)
关键词
标准幂基
BERNSTEIN基
BEZOUT矩阵
BERNSTEIN
BEZOUT矩阵
可控制型/可观测型矩阵
standard power basis
Bemstein basis
observability-type matrix generalized classical one, and a kind of by the linear generalized Finally, connections between Bernstein are discussed. The results obtained are Bezout matrix
Bernstein Bezout matrix
controllability/