期刊文献+

面向科技资源需求的推荐方法研究 被引量:1

Research on the Recommendation Method for the Demand Hall of Scientific and Technological Resources
下载PDF
导出
摘要 围绕科技资源需求大厅的功能,提出协同过滤与内容相结合的推荐方法,采用向量相似度计算和聚类的进行需求匹配,能够适应科技资源推荐过程中数据量巨大、数据稀疏、多样化等特点,为待解决需求者推荐合适的资源。 With the surging importance of scientific and technological resources appears in scientific and technological activities, increasing areas are making efforts to establish shared service platform to promote cooperation between source users and providers. As to the function of scientific and technological resources' demand hall, puts forward a recommendation method of integrating collaborative filtering and con- tents. It matches demands by vector quantity similarity calculation and clustering, recommending resources to demanders from whatever huge, sparse or diversified data.
出处 《现代计算机(中旬刊)》 2017年第4期60-64,共5页 Modern Computer
基金 项目基金:广东省科技基础条件平台公共服务能力提升研究及资源网络建设(No.2014A080804007) 科技资源数据分析与开放共享服务平台建设(No.2014B070706004)
关键词 科技资源 需求大厅 协同过滤 向量空间模型 推荐系统 Science and Technology Resources Demand hall Collaborative Filtering VSM Recommendation System
  • 相关文献

参考文献5

二级参考文献37

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3刘杰,陆君安.一个小型科研合作复杂网络及其分析[J].复杂系统与复杂性科学,2004,1(3):56-61. 被引量:56
  • 4袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:154
  • 5Breese J. S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [C]//Proceedings of the 14^th Conference on Uncertainty in Artificial Intelligence. 1998. 43-52.
  • 6Sarwar B,'Karypis G, Konstan J, Riedl J. Item based collaborative filtering recommendation algorithms [C]//Proceedings of the Tenth International World Wide Web Conference, 2001, 285-295.
  • 7Gui-Rong Xue, Chenxi Lin, Qiang Yang. Scalable Collaborative Filtering Using Cluster-based Smoothing [C]//Proeeeding of the 28th Annual International ACM SIGIR Conference, in Salvador, Brazil, 2005.
  • 8Sarwar B, Karypis G, Konstan J, Riedl J. Application of dimensionality reduction in recommender systems: A case study [C]//ACM WebKDD Web Mining for E- Commerce Workshop, 2000.
  • 9Ungar L. H, Foster D. P. Clustering Methods for Collaborative Filtering [C]//Workshop on Recommender Systems at the 15th National Conference on On Artificial Intelligence. 1998.
  • 10Aggarwal C C. On the effects of dimensionality reduction on high dimensional similarity search [C]//Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART. Symposium on Principles of Database Systems, 2001, 256-266.

共引文献84

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部