摘要
围绕科技资源需求大厅的功能,提出协同过滤与内容相结合的推荐方法,采用向量相似度计算和聚类的进行需求匹配,能够适应科技资源推荐过程中数据量巨大、数据稀疏、多样化等特点,为待解决需求者推荐合适的资源。
With the surging importance of scientific and technological resources appears in scientific and technological activities, increasing areas are making efforts to establish shared service platform to promote cooperation between source users and providers. As to the function of scientific and technological resources' demand hall, puts forward a recommendation method of integrating collaborative filtering and con- tents. It matches demands by vector quantity similarity calculation and clustering, recommending resources to demanders from whatever huge, sparse or diversified data.
基金
项目基金:广东省科技基础条件平台公共服务能力提升研究及资源网络建设(No.2014A080804007)
科技资源数据分析与开放共享服务平台建设(No.2014B070706004)
关键词
科技资源
需求大厅
协同过滤
向量空间模型
推荐系统
Science and Technology Resources
Demand hall
Collaborative Filtering
VSM
Recommendation System