期刊文献+

组合凸线器和Hadamard纠错码相结合的多类文本分类算法 被引量:1

A Multi-class classification algorithm based on multiconlitron and hadamard ECOC
下载PDF
导出
摘要 提出了一种组合凸线器和Hadamard纠错码相结合的多类文本分类算法,利用Hadamard纠错码将多类分类问题转换成多个二分类问题,对每个二分类问题,采用组合凸线器构造二分类器,使用海明距离判定待分类文本类别.在标准数据集Reuters 21578上进行了文本分类实验,分类结果表明,与支持向量机多类分类算法1-a-r、1-a-1和DAGSVM相比,该算法不仅提高了分类精度,而且分类速度有较大幅度的提高. A multi -class text classification algorithm based on Muhiconlitron and Hadamard ECOC is pro- posed. Hadamard ECOC is used to convert the multi - class classification problem into a series of binary - class problems. For each of the binary - class problems, the binary classifier is constructed by using multiconlitron. Hamming distance is used to determine the text category. The classification experiments are done on the reuters 21578 dataset. The experimental results show that, compared with 1 -a -r, 1 -a -1 and DAGSVM, the pro- posed algorithm can not only remarkably increase the speed of classification, but also significantly improve the precision of classification.
出处 《渤海大学学报(自然科学版)》 CAS 2017年第1期71-75,共5页 Journal of Bohai University:Natural Science Edition
基金 国家自然科学基金项目(No:61602056) 辽宁省教育厅项目(No:L2014444)
关键词 多类分类 组合凸线器 Hadamard纠错码 multi - class classification muhiconlitron hadamard ECOC
  • 相关文献

参考文献3

二级参考文献15

  • 1李祥纳,艾青,秦玉平,刘卫江.支持向量机增量学习算法综述[J].渤海大学学报(自然科学版),2007,28(2):187-189. 被引量:12
  • 2V.Vapnik,张学工.统计学习理论的本质[M].北京:清华大学出版社,2000
  • 3Nilsson, N J. Learning Machines [ M]. New York: McGraw-Hill, 1965.
  • 4Sejnowski, T J, Rosenberg, C R. Parallel networks that learn to pronounce English text[ J ]. Journal of Complex System, 1987,1 ( 1 ) : 145 - 168.
  • 5T G Dietterich, G Bakiri. Solving multiclass learning problems via error-correcting output codes[J]. Journal of Artificial Intelligence Research 1995,2: 263 - 286.
  • 6Bose R C,Ray-Chaudhuri,D K.On a class of error-correcting binary group codes[ J ]. Information and Control, 1960,3(1) :68 - 79.
  • 7Duda,R O,Machanik,J w, Singleton, R C.Function mock:ling experiments[R]. Tech. rep. 3605, Stanford Research Institute, 1963.
  • 8Douglas A Reynolds. Speaker identification and verification using Gaussian mixture speaker models[J]. Speech Communication, 1995,17( 1 - 2) :91 - 108.
  • 9David Heckerman. Bayesian Networks for Data Mining[J] 1997,Data Mining and Knowledge Discovery(1):79~119
  • 10David Heckerman,Dan Geiger,David M. Chickering. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data[J] 1995,Machine Learning(3):197~243

共引文献48

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部