期刊文献+

静爆试验测速图像中破片提取方法研究 被引量:3

Research on the Method of Extracting Fragments from Velocity Measurement Image of Static Explosion Testing
下载PDF
导出
摘要 针对静爆试验中高速相机拍摄到的破片运动图像背景复杂、目标多、干扰多、破片小等问题,研究了小目标的增强和提取方法.提出了基于平方增强的三帧差分方法,得到破片运动的前景图像,增强了图像前景的信噪比;采用改进的最大类间方差法,得到更加精确的分割阈值,提高了目标分割精度;采用形态学处理方法,消除孤立噪点并恢复分割时削弱的目标边缘.实验结果表明,该方法能够很好地适应背景灰度的微弱变化,完成复杂背景下静爆图像中破片的提取,得到破片的运动轨迹,解决了采用高速摄影进行破片测速的关键问题,一定程度上有助于提高测速精度. This paper presents a method for the enhancement and extraction of small targets in image sequence captured in static explosion test,whose background is complex with numerous targets,interferences and small segments.Three-frame difference method is adopted to process the original image sequence to obtain the foreground image.Since the foreground image is heavily contaminated by noise,so the gray square enhancement method is used to increase the contrast between the noise and the target.The modified Otsu method is employed to obtain the global optimum threshold,and the segmentation of the foreground image is accomplished.Finally,morphological processing is performed,and the noise of the isolated points is eliminated,and the weakening of the target in the process of differential and segmentation is resumed.Through a series of processing,the extraction of fragments in static explosion test image sequence is completed,and the trajectories of the fragments are obtained.
出处 《军械工程学院学报》 2017年第1期44-47,共4页 Journal of Ordnance Engineering College
关键词 破片测速 目标提取 三帧差分法 灰度增强 阈值分割 fragment velocity measurement target extraction three frames difference gray level enhancement threshold segmentation
  • 相关文献

参考文献3

二级参考文献20

  • 1吕国亮,赵曙光,赵俊.基于三帧差分和连通性检验的图像运动目标检测新方法[J].液晶与显示,2007,22(1):87-93. 被引量:36
  • 2OHTA N. A. Statistical approach to background subtraction for surveillance systems EA]. In pro. Of international Conference Computer Vision -C]. 2001:481 - 486.
  • 3Long W, Yang Y. Stationary background generation. An alterna- tive to the difference of two images [J]. Pattern Recognition, 1990, 23 (12): 1351-1359.
  • 4FRI[DMAN N, RUSSELL S. Image segmentation in video se- quences A probabilistic approach [-A], In: Proc. Of the 13th Con- ference on Uncertainty in Artificial Intelligence i-C]. San Francisco, 1997: 175-181.
  • 5STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking f-A. In: Proc. The IEEE Computer Society Conference on Computer Vision and Pattern Recognition [C]. 1999, 2: 246-252.
  • 6STAUFFER C. , GRIMSON W E L. Learning patterns of activity using real-time tracking [JT. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2000, 22 (8) : 747 - 757.
  • 7CHALIDABHONGSE T H, KIM K, HARWOOD D, et al. A per- turbation method for evaluating background subtraction algorithms [-A. Nice, France: Proceeding of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance [-C. 2003 : 11 - ]2.
  • 8Wang L, Wen M, et al. Background subtraction using incremental subspace learning EA-]. San Antonio, USA: International Confer- ence on Image Processing i-C]. 2007:45 - 48.
  • 9姚会,苏松志,王丽,李绍滋.基于改进的混合高斯模型的运动目标检测方法[J].厦门大学学报(自然科学版),2008,47(4):505-510. 被引量:22
  • 10魏武,龚树锋,龚树超.一种改进的基于视频的车辆检测与识别方法[J].计算机测量与控制,2010,18(1):20-22. 被引量:15

共引文献94

同被引文献27

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部