期刊文献+

一种基于参数化重排名提高多样性的推荐方法

A Method for Improving Recommendation Diversity Based on Parameterized Re-ranking
下载PDF
导出
摘要 针对传统个性化推荐算法追求提升推荐准确率而忽略总体多样性,从而导致用户满意度降低的问题,提出一种基于参数化重排名提高多样性的推荐方法.用户历史评分尺度决定了用户的偏好相关系数,该方法据此改进了传统重排名算法中偏好相关系数的计算方法.使用参数化的计算方法获得用户排名阈值,以实现推荐准确性与多样性的有效平衡,提高了推荐的质量需求.实验结果表明,该方法在推荐精确度都降低的情况下,较其他算法能够显著增加推荐的总体多样性,提高推荐质量. Aimimg at the problem of overemphasizing recommendation accuracy and ignoring the aggregate diversity in the traditional collaborative filtering recommendation algorithm,a method for improving recommendation diversity based on parameterized re-ranking is presented in this paper.User history ranking size decides users' preference coefficient.This paper improves the traditional re-ranking method to calculate the coefficient of users' preferences in the traditional re-ranking method by using the users' past preferences.The threshold of users' ranking is calculated by parameters,and the balance between recommendation accuracy and diversity is realized.Finally,experiment results demonstrate that the approach proposed in this paper can significantly enhance the aggregate recommendation diversity and promote the users' satisfaction compared with other similar recommendation algorithms,while reducing the recommendation accuracy.
出处 《安徽工程大学学报》 CAS 2017年第1期72-76,共5页 Journal of Anhui Polytechnic University
基金 教育部人文社科规划基金资助项目(13YJA630098)
关键词 推荐准确率 总体多样性 用户满意度 重排名方法 排名阈值 recommendation accuracy aggregate diversity users' satisfaction re-ranking method ranking threshold
  • 相关文献

参考文献5

二级参考文献67

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2MCNEE S M,RIEDL J,KONSTAN J A.Being accu-rate is not enough:how accuracy metrics have hurtrecommender systems[C]∥Proceedings of the ACMSIGCHI Conference on Human Factors in ComputingSystems.New York,NY,USA:ACM,2006:1197-1101.
  • 3HERLOCKER J L,KONSTAN J A,TERVEEN LG,et al.Evaluating collaborative filtering recommen-der systems[J].ACM Transactions on InformationSystems,2004,22(1):5-53.
  • 4ADOMAVICIUS G,TUZHILIN A.Toward the nextgeneration of recommender systems:a survey of thestate-of-the-art and possible extensions[J].IEEETransactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 5BALABANOVIC M,SHOHAM Y.Fab:content-based,collaborative recommendation[J].Communica-tions of ACM,1997,40(3):66-72.
  • 6ADOMAVICIUS G,KWON Y.Improving aggregaterecommendation diversity using ranking-based Tech-niques[C]∥Proceedings of the IEEE Transactions onKnowledge and Data Engineering.Piscataway,NJ,USA:IEEE,2011:1-15.
  • 7CREMONESI P,KOREN Y,TURRIN R.Perform-ance of recommender algorithms on TopN recommen-dation tasks[C]∥Proceedings of the 4th ACM Con-ference on Recommender Systems.New York,NY,USA:ACM,2010:39-46.
  • 8BRADLEY K,SMYTH B.Improving recommendationdiversity[C]∥Proceedings of the 12th Irish Confer-ence on Artificial Intelligence and Cognitive Science.Maynooth,Ireland:NUI,2001:85-94.
  • 9SMYTH B,MCCLAVE P.Similarity vs.diversity[C]∥Proceedings of the 4th International Conferenceon Case-Based Reasoning:Case-Based Reasoning Re-search and Development.Berlin,Germany:Springer-Verlag,2001:349-361.
  • 10ZIEGLER C N,MCNEE S M,KONSTAN J A,et al.Improving recommendation lists through topic diversifi-cation[C]∥Proceedings of the 14th International Con-ference on World Wide Web.New York,NY,USA:ACM,2005:22-32.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部