期刊文献+

Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1

喷雾干燥法合成纳微多孔球形LiFePO_4/C锂离子电池正极材料(英文)
下载PDF
导出
摘要 In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 为提高LiFePO_4(LFP)正极材料的电化学性能,采用喷雾干燥结合煅烧工艺合成具有纳微结构和多孔结构的球形LFP/C材料。结果表明,当煅烧温度高于500°C时,粒径尺寸为0.5~5μm的球形前驱体可以完全转化为LFP/C材料。当煅烧温度为700°C时,所得的LFP/C微米球形颗粒是由大量粒径约为20 nm的颗粒及发育良好且相互连通的孔道组成,其比表面积为28.77 m^2/g。在0.5C、1C和2C的电流倍率下恒流充放电时,700°C时所得LFP/C材料的放电比容量分别为162.43、154.35和144.03 m A·h/g,且50次循环后的容量保持率达到100%。该材料所具有良好的电化学性能得益于其较小的Li+扩散阻抗和特殊的微观结构。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页 中国有色金属学报(英文版)
基金 Project(2013AA050901)supported by the National High-tech Research and Development Program of China
关键词 LiFePO4/C cathode nano/micro structure porous material spray drying electrochemical properties LiFePO4/C正极材料 纳-微结构 多孔材料 喷雾干燥 电化学性能
  • 相关文献

参考文献1

二级参考文献16

  • 1卢俊彪,唐子龙,张中太,金永拄.镁离子掺杂对LiFePO_4/C材料电池性能的影响[J].物理化学学报,2005,21(3):319-323. 被引量:33
  • 2PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries [J]. J Electrochemical Society, 1997, 144(4): 1188-1194.
  • 3YAMADA A, CHUNG S C, HINOKUMA K, YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFeP04 for lithium battery cathodes [J]. J Electrochem Soc A, 2001, 148(3): 224-229.
  • 4PROSINI P P, PASQUALL M. Improved electrochemical performance of a LiFeP04 based composite cathode [J]. Electrochimica Acta, 2001,46: 3517-3523.
  • 5THACKERAY M. An unexpected conductor [J]. Nat Mater, 2002, I: 81-82.
  • 6ZHOU X, WANG F, ZHU Y, LIU Z. Graphene modified LiFeP04 cathode materials for high power lithium ion batteries [J]. J Mater Chern, 20 II, 21 (10): 3353-3358.
  • 7FISHER C A J, ISLAM M S. Surface structures and crystal morphologies of LiFeP04: Relevance to electrochemical behaviour [J]. J Mater Chern, 2008, 18(11): 1209-1215.
  • 8LI Y D, ZHAO S X, NAN C W, LI B H. Electrochemical performance of Si02-coated LiFeP04 cathode materials for lithium ion battery [J]. J Alloys and Compounds, 2011, 509(3): 957-960.
  • 9YAO J, WU F, QIU X, LI N, SU Y. Effect of CeO,-coating on the electrochemical performances of LiFeP04/C cathode material [J]. Electrochimica Acta, 2011, 56(16): 5587-5592.
  • 10CUI Y, ZHAO X. Enhanced electrochemical properties of LiFeP04 cathode material by CuO and carbon co-coating [J]. J Alloys and Compounds, 2010, 490(1-2): 236-240.

共引文献5

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部