期刊文献+

L-模糊赋范空间的完备化

On the Completion of L-fuzzy normed spaces
原文传递
导出
摘要 本文探讨L-模糊赋范空间的完备化问题.首先给出L-模糊赋范空间中L-模糊点列的柯西列和完备空间的概念,然后定义了两个L-模糊赋范空间之间的等距同构以及LX中层层一致稠密的集合,最后证明了每个L-模糊赋范空间在等距同构意义下有唯一的完备L-模糊赋范空间. This paper discusses the completion of L-fuzzy normed spaces. Firstly, the notions of Cauchy sequence and the completeness in L-fuzzy normed spaces are introduced. Subsequently, we give the concepts of isometric isomorphism between two L-fuzzy normed spaces and the uniformly dense sets for all stratum in L^X, by which we characterize the completion of L-fuzzy normed space. Finally, we prove that the completion of each L-fuzzy normed space exists and its completion is unique up to isometric isomorphism.
作者 毛铭桦
出处 《模糊系统与数学》 北大核心 2017年第1期50-56,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金(11301281)
关键词 L-模糊赋范空间 L-模糊集 完备 L-Fuzzy Normed Space L-Fuzzy Set the Completeness
  • 相关文献

参考文献1

二级参考文献3

  • 1YAN C H, FANG J X. Generalization of Kolmogoroff' s theorem to L-topological vector spaces[ J]. Fuzzy Sets and Systems, 2002, 125 (2) :177 - 183.
  • 2MAO M H, FANG J X. Some topological properities of L-fuzzy normed spaces[ J]. Fuzzy Sets and Systems ,2012,195 : 100 - 108.
  • 3LIU Y M, LUO M K. Fuzzy Topology[ M ]. Singapore:World Scientific Publishing, 1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部