期刊文献+

基于改进型模糊神经网络的信用卡客户违约预测 被引量:6

Prediction of default of credit card clients base on Improved Fuzzy Neural Network
原文传递
导出
摘要 本文在传统模糊神经网络基础上,采用灰狼优化算法计算神经网络的初始权值和阈值,提出了一种改进型模糊神经网络算法,并建立了信用卡客户违约预测模型。改进型模糊神经网络具有很好的非线性拟合能力和很好的全局搜索能力,解决了传统模糊神经网络算法收敛速度慢,容易陷入局部最优的问题。最后,通过预测信用卡客户违约问题,与支持向量机算法、传统模糊神经网络算法和卡方自动交互诊断器算法相比较,验证了改进型模糊神经网络算法的准确性、高效性和鲁棒性,平均准确率达到了94.1%。 This paper was based on the traditional fuzzy neural network, which applied the gray wolf optimization algorithm to calculate initial weights and thresholds of neural network, it proposed improved fuzzy neural network algorithm and established a prediction model of default of credit card clients. Improved fuzzy neural network has good nonlinear fitting ability and global search capability and solved the problem that the traditional fuzzy neural network algorithm slowly convergence and easily falls into local solution. Finally comparing support vector machine algorithm, the traditional fuzzy neural network algorithm and Chi-square automatic interaction diagnosis algorithm with improved fuzzy neural network by prediction of default of credit card customers and verified the accuracy, efficiency and robustness of the improved fuzzy neural network algorithm, the average accuracy rate of improved fuzzy neural network was 94.1%.
出处 《模糊系统与数学》 北大核心 2017年第1期143-148,共6页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11226335 11301036) 吉林省教育厅科学技术项目([2015]111号)
关键词 灰狼优化算法 信用卡违约 模糊神经网络 支持向量机 Gray Wolf Optimization eredit card defaults fuzzy neural network support vector machine
  • 相关文献

参考文献3

二级参考文献11

  • 1张文修,徐宗本,梁怡,梁广锡.包含度理论[J].模糊系统与数学,1996,10(4):1-9. 被引量:49
  • 2刘清.Rough集及Rough推理[M].北京:科学出版社,2004.
  • 3Radzikowska A M, Kerre E E. A comparative study of fuzzy rough sets[J]. Fuzzy Sets and Systemvs,2002,126(2):137-155.
  • 4Kuncheva L I. Fuzzy rough sets: Application to feature selection[J]. Fuzzy Sets and Systems,1992,51:147-153.
  • 5Cornelis C,Jensen R. Attribute selection with fuzzy decision reducts[J]. Information Sciences.2010,180 : 209-224.
  • 6Chen S M. A weighted fuzzy reasoning algorithm for medical diagnosis [J]. Decision Support Systems,1994,(11):37 -43.
  • 7Yeung D S,Tsang E C C. A comparative study on similarity based fuzzy reasoning methods[J]. IEEE Trans. SMCPart B:Cyber,1997,27(2):216-227.
  • 8Wang D G,Meng Y P, Li H X. A fuzzy similarity inference method for fuzzy reasoning [J]. Computers andMathematics with Applications, 2008 . 56 : 2445-2454.
  • 9Feng Z Q,Liu C G. On similarity-based approximate reasoning in interval-valued fuzzy environments [J].Informatica,2012,36(3) :255-262.
  • 10黎文航,陈善本,王加友,杨峰.基于变精度粗糙集的脉冲GTAW过程建模方法[J].焊接学报,2008,29(7):57-59. 被引量:6

共引文献19

同被引文献45

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部