摘要
研究属性值和属性权重均用区间三角模糊数来表示的群决策问题,提出了一种基于集对分析二元联系数的决策方法。借鉴集对分析理论和统计学理论的思想,将区间三角模糊数转化为"均值+方差"二元联系数的形式,保留了区间三角模糊数决策信息中的确定性与不确定性。集结专家偏好得到二元联系数集结矩阵,给出了两个直观且合理的决策准则。与已有利用模糊集成算子集结区间三角模糊数偏好并基于可能度矩阵进行排序的方法相比,该方法在决策过程中保留了模糊偏好信息的不确定性,使得决策结果更客观和可信,且计算更为简便。通过对实例进行分析验证了方法的实用性和有效性。
For a kind of group decision making problems with interval-valued triangular fuzzy attribute and weight, this paper proposes a decision-making method based on connection number of set pair analysis. Utilizing the theories of set pair analysis and statistical, the interval triangle fuzzy number is transformed into connection number in the form of "the mean and variance", which retained the certainty and uncertainty in interval triangular fuzzy decision-making information. The experts ' preferences is aggregated into a matrix with connection numbers, and two intuitive and rational decision criterion is given. Comparing with the method that use the fuzzy integration operator to aggregate experts' preference and sort the alternatives based on the possible degree matrix, this method preserves the uncertainty of fuzzy preference information in the decision-making process, which makes the decision result more objective, reliable, and easier to calculate. An example is analyzed to validate the practicability and validity of this method.
出处
《模糊系统与数学》
北大核心
2017年第1期179-186,共8页
Fuzzy Systems and Mathematics
基金
教育部人文社会科学研究规划项目基金(14YJA630078)资助课题
关键词
群体决策
区间三角模糊数
不确定性
二元联系数
Group Decision Making
Interval-valued Triangular Fuzzy Number
Uncertainty
Connection Number