期刊文献+

基于相似日和WNN的光伏发电功率超短期预测模型 被引量:15

A very short-term prediction model for photovoltaic power based on similar days and wavelet neural network
下载PDF
导出
摘要 光伏发电功率预测对提高并网后电网的稳定性及安全性具有重要意义。文章提出一种基于相似日和小波神经网络(WNN)的光伏功率超短期预测方法。首先利用光伏发电系统的历史气象信息建立气象特征向量,通过计算灰色关联度寻找到合适的相似历史日。再根据自相关性分析法找出与预测时刻功率相关性最大的几个历史时刻功率,结合历史时刻的温度,辐照度,风速等光伏出力的主要天气影响因素科学合理的确定模型输入因子。最后使用小波神经网络(WNN)创建预测模型,通过相似历史日数据作为训练样本训练小波网络,而后对预测日的出力情况进行逐时刻预测。实例分析表明,该方法具有较高的预测精度,为解决光伏发电系统超短期功率预测提供了一种可行路径。 Photovohaic (PV) generation power prediction has great significance for the stability and security of power grid after the PV grid-connection. In this paper, we propose a very short-term photovoltaic power forecasting method- which is based on similar days and wavelet neural networks (WNN). Firstly, the historical weather information from the PV power generation system is utilized to establish meteorological feature vectors, and similar days are found based on computation grey correlation degree. Secondly, the autocorrelation analysis method isused to discover historical out- put power which has great relation with predicted output power. The historical meteorological data, such as tempera- ture, irradiance and wind speed, are utilized to determine the input factor of this model. Finally, the wavelet neural network (WNN) is utilized to create a forecast model, which is to predict forecasting daily output one by one moment- though the similar historical day data as training sample of WNN. The instance analysis shows that this model has high accuracy, and can provide an effective and feasible way to forecast the very short-term power output of the PV system.
出处 《电测与仪表》 北大核心 2017年第7期75-80,共6页 Electrical Measurement & Instrumentation
关键词 光伏功率预测 相似日 灰色关联 WNN 超短期 photovoltaic power forecast, similar day, grey association, WNN, very short-term
  • 相关文献

参考文献11

二级参考文献142

  • 1余健明,燕飞,杨文宇,夏超.中长期电力负荷的变权灰色组合预测模型[J].电网技术,2005,29(17):26-29. 被引量:60
  • 2曹双华,曹家枞.太阳逐时总辐射混沌优化神经网络预测模型研究[J].太阳能学报,2006,27(2):164-169. 被引量:38
  • 3高亚静,周明,李庚银,李睿,肖利民.基于马尔可夫链和故障枚举法的可用输电能力计算[J].中国电机工程学报,2006,26(19):41-46. 被引量:31
  • 4朱陶业,李应求,张颖,张学庄,何朝阳.提高时间序列气象适应性的短期电力负荷预测算法[J].中国电机工程学报,2006,26(23):14-19. 被引量:46
  • 5冈萨雷斯.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2007:427.
  • 6Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
  • 7Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027-1035.
  • 8Xiao W, Lind M G J, Dunford W G, et al. Real-time identification of optimal operating points in photovoltaic power systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017-1026.
  • 9Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.
  • 10Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]. IEEE Power Engineering Society General Meeting, 2007.

共引文献679

同被引文献223

引证文献15

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部