期刊文献+

Microstructure and Growth Kinetics of Silicide Coatings for TiAl Alloy

Microstructure and Growth Kinetics of Silicide Coatings for TiAl Alloy
下载PDF
导出
摘要 In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)]. In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)].
机构地区 School of Aeronautics
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期245-249,共5页 武汉理工大学学报(材料科学英文版)
基金 Funded by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province(2014JZ012)
关键词 pack cementation coating titanium aluminide siliconizing kinetics activation energy rate controlling step pack cementation coating titanium aluminide siliconizing kinetics activation energy rate controlling step
  • 相关文献

参考文献2

二级参考文献10

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部