期刊文献+

串联模式下的应力-强度模型可靠度的非参数统计推断

Nonparametric Inference for Reliability of a Series Stress-strength Structure Model
下载PDF
导出
摘要 应力-强度模型在工程学,医学等领域有着广泛的应用。对于变量非删失以及右删失的情形,研究了当随机应力和随机强度相互独立时的元串联系统应力-强度模型可靠度的非参数估计。近一步,建立了估计量的大样本性质.数值模拟表明所提出的方法表现良好。 The stress-strength model has a wide range of applications in engineering, medicine and other fields. Con-sidering the variable non-censoring and right censoring, a nonparametric estimation for the stress-strength model reliability ofseries system is studied when the random stress and strengths are independent of each other. Furthermore, large sample char-acter of the proposed estimator is established in this paper. Numerical simulation shows that the proposed method performswell in finite samples.
作者 祁辉
出处 《三明学院学报》 2017年第2期1-5,共5页 Journal of Sanming University
基金 国家自然科学基金项目(11401341) 福建省自然科学基金项目(2015J05014 2016J01681) 福建省教育厅项目(JK2014046 JA15476 JAT160468 JA160474) 三明学院校级科研项目(B201617)
关键词 应力-强度模型 经验分布函数 Kaplan-Meier估计量 右删失 stress-strength model empirical distribution function Kaplan-Meier estimator right censoring
  • 相关文献

参考文献2

二级参考文献43

  • 1Johnson R A. Stress-strength models for reliability[M]. In: Handbook of Statistics, Vol. 7, Krishnaiah P R, Rao C R, Ed. North Holland: Elsevier, 1988, 27-54.
  • 2Weerahandi S, Johnson R A. Testing reliability in a stress-strength model when X and Y are normally distributed[J]. Technometrics, 1992, 34: 83-91.
  • 3Guo H, Krishnamoorthy K. New approximate inferential methods for the reliability parame- ter in a stress-strength model: the normal case[J]. Communications in Statistics-Theory and Methods, 2004, 33: 1715-1731.
  • 4McCool J I. Inference on P(Y < X) in the Weibull case[J]. Communications in Statistics- Simulation and Computations, 1991, 20: 129-148.
  • 5Kundu D, Gupta R D. Estimation of R = P(Y < X) for Weibull distribution[J]. IEEE Transaction on Reliability, 2006, 55: 270-280.
  • 6Krishnamoortby K, Lin Y. Confidence limits for stress-strength reliability involving Weibull models[J]. Journal of Statistical Planning and Inference, 2010, 140: 1754-1764. Baklizi A. Likelihood and Bayesian estimation of Pr(X < Y) using lower record values from generalized exponential distribution[J]. Computational Statistics and Data Analysis, 2008, 52: 346-3473.
  • 7Kundu D, Gupta R D. Estimation of R = P(Y < X) for the generalized exponential distri- bution[J]. Metrika, 2005, 61: 291-308.
  • 8Baklizi A. Likelihood and Bayesian estimation of Pr(X < Y) using lower record values from generalized exponential distribution[J]. Computational Statistics and Data Analysis, 2008, 52: 3468-3473.
  • 9Lio Y L, Tsai T R. Estimation of 5 --- P(X progressively first failure-censored samples[J] 322. < Y) for Burr XII distribution based on the Journal of Applied Statistics, 2012, 39: 309-.
  • 10Kotz S, Lumelskii Y, Pensky M. The stress-strength model and its generalizations[M]. Sin- gapore: World Scientific Press, 2003.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部