期刊文献+

基于业务流量预测的AOS自适应帧生成算法 被引量:5

AOS Adaptive Frame Generation Algorithm Based on traffic Prediction
下载PDF
导出
摘要 随着研究的深入,复杂空间系统业务数据流的自相似性逐渐被认识,传统的等时帧生成算法及高效率生成算法越来越难以适应空间系统业务流量的高突发性和高复杂性;基于此,提出了一种基于小波神经网络业务流量预测的自适应帧生成算法,在满足一定延时约束条件下,根据业务流量预测结果,自适应调整成帧时刻;帧复用效率相比等时帧生成算法有显著优势,同时还避免了高效率帧生成算法中存在的帧延时过长的问题。 With the in-depth study, the self similarity of complex spatial data system is gradually recognized. Traditional time frame generation algorithm and efficient frame generation algorithm are more and more difficult to adapt to the high burst and high complexity of space traffic. This paper presents an adaptive frame generation algorithm based on wavelet neural network traffic prediction. Under the con- dition of certain delay constraint, the adaptive frame generation time can be adjusted according to the prediction results of traffic flow. Corn pared with the time frame generation algorithm, the frame multiplexing efficiency of this algorithm has a significant advantage, and it also a voids the problem of long frame delay.
出处 《计算机测量与控制》 2017年第4期176-178,196,共4页 Computer Measurement &Control
关键词 高级在轨系统 小波神经网络 包流量预测 自适应帧生成 AOS wavelet neural network packet traffic prediction adaptive frame generation
  • 相关文献

参考文献2

二级参考文献14

  • 1李建平.小波分析与信号处理[M].重庆:重庆出版社,2001.259-261.
  • 2李建平,小波分析与信号处理.理论、应用及软件实现,2001年,259页
  • 3刘勇键,公路交通科技,2000年,17卷,6期,15页
  • 4袁曾任,人工神经网络及其应用,1999年,1页
  • 5何振亚,神经智能.认知科学中若干重大问题的研究,1997年,10页
  • 6Zhang Q,IEEE Trans NN,1992年,3卷,4期,889页
  • 7ZHANG Qinghua, Using wavelet network in nonparametric estimation [J]. IEEE Trans on Neural Networks, 1997, 8(2):227- 236.
  • 8FANG Y, CHOW T W S. Orthogonal wavelet neural networks applying to identification of Wiener model [J]. IEEE Trans on Circuits and Systems-Ⅰ: Fundamental Theory &Applications, 2000,47(4) :591- 593.
  • 9DAUBECHIES I. The wavelet transform, time-freqency localization and signal analysis [J]. IEEE Trans on Information Theory, 1990,36(5) :961 - 1005.
  • 10ZHANG J, WALTER G G, MIAO Y. Wavelet Neural networks for function learning [ J ]. IEEE Trans on Signal Processing, 1995,43(6) :1485 - 1497.

共引文献15

同被引文献33

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部