期刊文献+

面向车道线图像识别的多种滤波方式对比分析 被引量:1

Comparable analysis of multiple filtering methods for lane line image recognition
下载PDF
导出
摘要 针对图像预处理的结果会影响车道线识别精度和速度的问题,文中选取二维小波包分解滤波、中值滤波和锐化滤波对某一汽车常用工况下的车道线图像分别进行滤波降噪,采用Sobel算子对未经滤波处理和经过3种滤波处理的车道线图像进行了边缘检测。结果显示二维小波包分解滤波处理后的图像能识别的车道线特征点数目最多,中值滤波处理后的图像能识别的车道线特征点占比最高,锐化滤波处理后的图像识别速度最快。 With regarding to the problem that results of the image pre-processing wilt affect the identification of lane line in its accuracy and speed,this paper chooses the decomposition filtering, median filtering and sharpening filtering of two-dimensional wavelet packet to filter the noise of the lane line image for the particular vehicle under common operating condition and the Sobel operator is used to test the the edge of the lane line images of those which has non-filtering processing and experienced three filtering processes.The results show that images,which have been processed by the decomposition filtering by the two-dimensional wavelet packet,identify the largest number of lane line feature points;images,which have been processed by the median filtering,identify the highest proportion of lane line feature points;images,which have been processed by the sharpening filtering have the highest identification speed.
出处 《无线互联科技》 2017年第6期132-136,共5页 Wireless Internet Technology
基金 浙江省科技计划项目 项目编号:2015C31056
关键词 车道线 二维小波包分解滤波 中值滤波 锐化滤波 lane line decomposition filtering of two-dimensional wavelet packet median filtering sharpening filtering
  • 相关文献

参考文献1

二级参考文献9

  • 1林广宇,魏朗.基于数字图像技术的汽车行驶轨迹状态识别[J].交通运输工程学报,2006,6(3):114-117. 被引量:5
  • 2康文静,丁雪梅,崔继文,敖磊.基于改进Hough变换的直线图形快速提取算法[J].光电工程,2007,34(3):105-108. 被引量:35
  • 3NHTSA's national center for statistics&analysis. Traffic safety facts 2007[R]. National Highway Traffic Safety Administration, 2008.
  • 4Hidas Peter. Modeling vehicle interactions in microscopic simulation of merging and weaving[R]. Transportation Research Part C, 2005.
  • 5Kim S Y,Oh S Y. A driver adaptive lane departure warning system based on image processing and fuzzy evolutionary technique [A]. IEEE Intelligent Vehicles Symposium2003[C]. Columbia, OH, 2003 : 356-361.
  • 6Lee J W. A machine vision system for lane-departure detection [J]. Computer Vision and Image Understanding,2002,86 (1) : 52-78.
  • 7Jung C R,Kelber C R. Lane following and lane departure using a linear-parabolic model[J]. Image and Vision Computing, 2005 (23) : 1192-1202.
  • 8Jang J H, Hong K S. Fast line segment grouping method for finding globally more favorable line segments [J]. Pattern Recognition, 2002 (35) : 2235-2247.
  • 9Kesisis A L,Papamarkos N. A window based inverse Hough transform [J]. Pattern Recognition, 2000 (33) : 1105-1117.

共引文献4

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部