期刊文献+

带交易费用和投资约束的扩散模型中最优投资-分红问题(英文) 被引量:1

Optimization of Investment-Dividend Problem in a Diffusion Model with Transaction Costs and Investment Constraints
下载PDF
导出
摘要 本文研究了带交易费用和投资约束的最优投资-分红问题.假定公司投资受到包含卖空和借贷的一般性约束条件,由此产生正则-脉冲随机控制问题.本文重点研究了投资收入不能满足资本折扣损失的非平凡情形,区分了三种不同可能状况下的拟变分不等式,并构造了其对应的值函数和最优策略.我们最后也给出了平凡情形下随机控制的具体结论. This paper investigates the investment-dividend optimization problem for a corpora- tion with transaction costs and investment constraints. The main feature is that we assume general constraints on investments including the special case of short-sale and borrowing constraints. This results in a regular-impulse stochastic control problem. The nontrivial case is that the investment can't meet the loss of wealth due to discounting. In this case, delicate analysis is carried out on QVI w.r.t, three possible situations, leading to an explicit construction of the value functions together with the optimal policies. We also give explicit conclusion of the trivial case at last.
出处 《应用概率统计》 CSCD 北大核心 2017年第2期151-169,共19页 Chinese Journal of Applied Probability and Statistics
基金 partly supported by the Project of the Humanities and Social Sciences of the Ministry of Education to the West and the Border Areas(Grant No.14XJC910001) the Fundamental Research Funds for the Central Universities(Grant No.106112016CDJXY100002) the National Natural Science Foundation of China(Grant No.11671404)
关键词 投资约束 交易费用 正则-脉冲控制 拟变分不等式 investment constraints transaction costs regular-impulse control quasi-variational inequalities
  • 相关文献

参考文献1

二级参考文献24

  • 1Abramowitz M,Stegun I A. Handbook of Mathematical Functions:with Formulas,Graphs,and Mathematical Tables[M].Washington:United States Department of Commerce,US Government Printing Office,1972.
  • 2Asmussen S,Hφjgaard B,Taksar M. Optimal risk control and dividend distribution policies:Example of excess-of loss reinsurauce for an insurance corporation[J].Finance Stoch,2000,(03):299-324.
  • 3Asmussen S,Taksar M. Controlled diffusion models for optimal dividend pay-out[J].Insurance:Mathematics and Economics,1997,(01):1-15.
  • 4Bensoussan A,Lions J L. Nouvelle formulation de problèmes de contr(o)1e impulsionnel et applications[J].C R Acad Sci Paris Sér A-B,1973.1189-1192.
  • 5Bensoussan A,Lions J L. Impulse Control and Quasivariational Inequalities[M].Montrouge:Gauthier-Villars,Montrouge,1984.
  • 6Cadenillas A. Consumption-investment problems with transaction costs:survey and open problems[J].Mathematical Methods of Operations Research,2000,(01):43-68.doi:10.1007/s001860050002.
  • 7Cadenillas A,Choulli T,Taksar M,Zhang L. Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm[J].Mathematical Finance,2006,(01):181-202.doi:10.1111/j.1467-9965.2006.00267.x.
  • 8Cadenillas A,Zapatero F. Classical and impulse stochastic control of the exchange rate using interest rates and reserves[J].Mathematical Finance,2000,(02):141156.
  • 9Cai J,Gerber H U,Yang H. Optimal dividends in an Ornstein-Uhlenbeck type model with credit and debit interest[J].North Amer Actuar J,2006,(02):94119.
  • 10Choulli T,Taksar M,Zhou X Y. Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction[J].Quant Finance,2001,(06):573-596.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部