期刊文献+

细胞壁组分在红酵母RS1高耐铝中的作用研究 被引量:5

Role of Cell Wall Components in High Aluminum Tolerance of Rhodotorula taiwanensis RS1
下载PDF
导出
摘要 红酵母RS1是从酸性油茶土壤中分离到的一株高耐铝微生物,能够忍耐高达200 mmol/L以上的铝,前期研究表明RS1高耐铝能力与细胞壁有关,但是其具体机制还不清楚。因此,本文进一步研究了细胞壁组分在RS1高耐铝中的作用,以期为RS1高耐铝的具体机制提供新信息。结果表明,高于70 mmol/L的铝对RS1生长产生抑制作用,0~70 mmol/L铝处理后细胞壁主要组分甘露糖和葡聚糖含量都没有显著改变,而细胞壁磷含量在70 mmol/L铝处理后显著升高。在高铝处理时,糖蛋白抑制剂抗生素衣霉素(tunicamycin)极大加重RS1的铝毒害。由此说明,细胞壁多糖组分含量并不对RS1高耐铝起到主要作用,细胞壁结构修饰如细胞壁磷含量响应和细胞壁N连接的糖蛋白修饰在RS1高耐铝中可能起到一定作用。 RS 1 was a high A1 tolerant Rhodotorula taiwanensis strain which was isolated from the acidic oil tea soil, andour previous studies showed that cell wall played an important role in the AI tolerance of RS 1. However, the exact role of cellwall in the high A1 tolerance of RS1 is still unclear. The role of cell wall components in the A1 tolerance of RS1 was furtherinvestigated in this paper in order to clarify the mechanism underlying the high A1 tolerance of RS1. The results showed that, thegrowth of RS 1 was severely inhibited by A1 higher than 70 mmol/L. The glucan and mannan contents of cell wall of RS 1 did notchange after A1 treatment, whereas the content of phosphorus of cell wall was elevated under 70 mmol/L A1. The growth of RS 1was inhibited by A1 much more after additions of cell wall metabolism inhibitor tunicamycin. In conclusion, phosphorusaccumulation of cell wall and N-linked mannoproteins may play important roles in high A1 tolerance of RS 1.
出处 《土壤》 CAS CSCD 北大核心 2017年第2期256-260,共5页 Soils
基金 国家自然科学基金项目(41271257) 中国科学院"战略性先导科技专项重点研究计划"项目(XDB15030302) 国家重点基础研究发展计划项目(2014CB441000)资助
关键词 红酵母 铝毒 细胞壁 甘露糖蛋白 Rhodotorula A1 toxicity Cell wall Mannoproteins
  • 相关文献

参考文献7

二级参考文献237

  • 1辛健康,汪运珊,冷攀梅.抗酸铝微生物的分离与初步鉴定[J].六盘水师范高等专科学校学报,2007,19(3):19-21. 被引量:2
  • 2梁月荣.茶树铝代谢研究及其对作物抗铝育种的意义[J].福建茶叶,1993,16(3):20-24. 被引量:19
  • 3小西茂毅,陆建良.耐酸铝细菌的分离及其特性鉴定[J].茶叶,1995,21(4):26-29. 被引量:8
  • 4杨建立,何云峰,郑绍建.植物耐铝机理研究进展[J].植物营养与肥料学报,2005,11(6):836-845. 被引量:34
  • 5Kochian L V, Hoekenga O A, Pineros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol, 2004, 55:459--493.
  • 6Fageria N K, Carvalho J R P. Influence of aluminum in nutrient solutions on chemical composition in upland rice cultivars. Plant Soil, 1982, 69:31--44.
  • 7Vasconcelos S S, Jacob-Neto J, Rossiello R O P. Differential root responses to aluminum stress among Brazilian rice genotypes. J Plant Nutr, 2002, 25 : 655-669.
  • 8Ganesan K, Sankaranarayanan C, Balakumar T. Physiological basis of differential aluminum tolerance in rice genotypes. Commun Soil Sci Plant Anal, 1993, 24:2 179--2 191.
  • 9Ma J F, Shen R F, Zhao Z Q, et al. Response of rice to A1 stress and identification of quantitative trait loci for AI tolerance. Plant Cell Physiol, 2002, 43:652--659.
  • 10Chen R F, Shen R F. Root phosphate exudation and pH shift in the rhizosphere are not responsible for aluminum resistance in rice. Acta Physiol Plant, 2008, 30:817--824.

共引文献49

同被引文献49

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部