期刊文献+

含有J2项摄动的卫星追逃轨道优化 被引量:2

Pursuit Evasion Game with J2 Perturbation
下载PDF
导出
摘要 研究含有摄动作用下卫星拦截逃逸的双边最优控制问题,其中假定拦截卫星和目标都使用幅值受限连续有限推力进行机动.在卫星所受二体引力基础上加入J2项非球形摄动,推导了两星的动力学方程.为了求得该微分对策问题的鞍点最优解,根据极大极小值的充分必要条件由系统的哈密顿函数得到双边最优时的控制输出,将最优控制问题转化为两点边值问题.针对该问题存在的初值难以获取、收敛困难等问题,采用启发式优化算法搜到鞍点解的初值,并将其带入非线性优化算法获得精确数值解,最后通过仿真给出了两星追逃过程中的最优轨迹和双边最优控制输出. A two-side optimization problem where the intercepting satellite pursued the target satellite was studied in this paper. In the pursuit-evasion game, it was assumed that both sides use the continuous thruster and suffer from the earth central gravity with J2 perturbation. The dynamics equations were established to describe their three dimensional motion. Then the optimal control outputs of both side satellites were obtained by building the systems Hamilton and applying the functional extremal condition. The pursuit evasion games was transformed to the two point boundary value problem. At last the new problem was solved with the mixed numerical method where an initial solution was acquired by the genetic algorithm and sent to nonlinear programming as its starting value. Simulation was used to obtain the optimal interception and escaping trajectories of the two satellites and validate the proposed method.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2017年第4期418-423,共6页 Transactions of Beijing Institute of Technology
基金 中央高校基本科研业务费专项资金资助项目(HIT.NSRIF.2015033) 微小型航天器技术国防重点学科实验室开放基金资助项目(HIT.KLOF.MST.201501)
关键词 卫星拦截 微分对策 J2项摄动 启发式搜索算法 satellite interception differential games J2 perturbation genetic algorithm
  • 相关文献

参考文献1

二级参考文献14

  • 1陈统,徐世杰.基于遗传算法的最优Lambert双脉冲转移[J].北京航空航天大学学报,2007,33(3):273-277. 被引量:28
  • 2Shen H J,Tsiotras P. Optimal two-impulse rendezvous using mul- tiple-revolution Lambert solutions[ J]. Journal of Guidance,Con- trol, and Dynamics,2003,26( 1 ) :50-61.
  • 3Spencer D B, Kim Y H. Optimal spacecraft rendezvous using genetic algorithms [ J ]. Journal of Spacecraft and Rockets,2002, 39(6) :859-865.
  • 4Kim D Y,Woo B,Park S Y,et al. Hybrid optimization for multi- pie-impulse reconfiguration trajectories of satellite formation fly- ing[J]. Advances in Space Research,2009,44( I ) :1257-1269.
  • 5Battin R H. An introductiml to tile mathematics and methods of astrodynamics[ M ]. Revised Edition. New York : AIAA, 1999.
  • 6Danchick R. Gauss meets newton again: How to make Gauss orbit determination from two position vectors mnre efficient and robust with Newton-Raphson iterations[ J]. Applied Mathemat- ics and Computation,2008,195 ( 2 ) : 364-375.
  • 7Abdelkhalik O,Mortari D. N-impulse orbit transfer using genet- ic algorithms [ J ]. Journal of Spacecraft and Rockets, 2007, 44(2) :456-460.
  • 8Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithm [ J]. IEEE Transaction on Sys- tems, Man and Cybernetics, 1994,24 (4) :656-666.
  • 9齐映红,曹喜滨.基于遗传算法的最优多脉冲交会轨道设计[J].哈尔滨工业大学学报,2008,40(9):1345-1348. 被引量:9
  • 10邓泓,仲惟超,孙兆伟,吴限德.基于遗传算法的卫星攻击路径规划方法研究[J].宇航学报,2009,30(4):1587-1592. 被引量:8

共引文献2

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部