摘要
若图G能画到平面上,且允许每条边至多出现一个交叉点,则图G是1-平面图。图G的一个正常点染色是指存在一个顶点集到颜色集的映射φ:V(G)→{1,2,…,k},对于G中的任意两个相邻的点u和v,φ(u)≠φ(v)。图G的一个k染色是指图G能够正常点染色所需的色数至少为k,图G有一个k染色又称图G是k-可染的。通过权转移的方法证明了不含3圈和4圈的1-平面图是5-可染的。
A graph G is called 1-planar graph if it can be drawn on the plane so that each edge is crossed by at most one other edge. A propervertexcoloring of G is an assignment φ of integer to the vertex of G such that φ(u) ≠φ(v) if the vertex u and v adjacent in G. A k-coloring is a proper vertex coloring using k colors at least. The theorem that every 1- planar graph without cycles of length 3 or 4 is 5-colorable was given by the Discharging Method.
作者
王晔
孙磊
WANG Ye SUN Lei(School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, Shandong, China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第4期34-39,共6页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金(11626148)
山东省自然科学基金教育厅联合基金项目资助(ZR2014JL001)
关键词
1-平面图
交叉点
k-可染
交叉面
1-planar graph
cross vertices
k-colorable
cross faces