期刊文献+

两类非线性波动方程解的爆破时间的下确界 被引量:1

Lower bounds for blowup time of two nonlinear wave equations
原文传递
导出
摘要 对带有强阻尼项和频散项的非线性黏弹方程和非线性Petrovsky方程的初边值问题进行研究,在方程的解爆破的前提下,通过适当的扰动得到爆破时间的下确界。 The initial boundary value problem for the nonlinear viscoelastic euqation with strong damping term and dis- persive term and the nonlinear Petrovsky equation is investigated. Under the premise of the solutions blow up of the equations, the lower bound of the blow up time is obtained by the proper perturbation.
作者 董莉 DONG Li(College of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, Chin)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第4期56-60,67,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61174082) 国家自然科学青年基金资助项目(61104129)
关键词 强阻尼项 频散项 Petrovsky方程 爆破 下确界 strong damping term dispersive term Petrovsky equation blow-up lower bound
  • 相关文献

参考文献1

二级参考文献20

  • 1Aassila M, Cavalcanti M M, Soriano J A. Asymptotic stability and energy decay rates of solutions of the wave equation with memory in a star-shaped domain. SIAM J Control Optim, 2000, 38(5): 1581-1602.
  • 2Berrimi S, Messaoudi S A. Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal, TMA, 2006, 64:2314-2331.
  • 3i Berrimi S, Messaoudi S A. Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Elect J Diff Eqns, 2004, 88:1-10.
  • 4Cavalcanti M M, Domingos Cavalcanti V N, Ferreira J. Existence and uniform decay of nonlinear vis- coelastic equation with strong damping. Math Meth Appl Sci, 2001, 24:1043-1053.
  • 5Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. Exponential decay for the solution of semilinear viscoelastic wave equation with localized damping. Elect J Diff Eqns, 2002, 44:1-14.
  • 6Cavalcanti M M, Domingos Cavalcanti V N, Prates Filho J S, Soriano J A. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ Integral Equ, 2001, 14(1): 85-116.
  • 7Kawashima S, Shibata Y. Global existence and exponential stability of small solutions to nonlinear vis- coelasticity. Commun Math Phy, 1992, 148:189-208.
  • 8Kirane M, Tatar N-e. A memory type boundary stabilization of a mildy damped wave equation. Elect J Qual Theory Differ Equ, 1999, 6:1-7.
  • 9Messaoudi S A, Tatar N-e. Exponential and polynomial decay for quasilinear viscoelastic equation. Non- linear Anal, TMA, 2007, 68:785-793.
  • 10Messaoudi S A, Tatar N-e. Global existence and asymptotic behavior for a nonlinear viscoelastic problem. Math Sci Research J, 2003, 7(4): 136-149.

共引文献12

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部