期刊文献+

基于Spark支持差分隐私保护的Apriori算法

Improved Apriori Preserving Differential Privacy in the Framework of Spark
原文传递
导出
摘要 针对现有的海量数据分析和数据挖掘过程中,无法应对任意背景知识下的恶意攻击而造成用户隐私数据泄露的问题,在Spark大数据内存并行计算框架的基础上引入差分隐私保护机制,对模式挖掘过程中的敏感信息进行Laplace加噪处理,提出一种适合于在Spark框架下满足差分隐私保护的Apriori关联分析算法。该算法利用差分隐私的组合特性,从理论上证明了算法满足£一差分隐私特性,并且指导了隐私保护预算的分配过程。通过实验表明,提出的算法比在MapReduce框架下实现支持隐私保护的Apriori算法迭代效率更高、安全性更好,同时在保证可用性前提下,算法具有较好的隐私保护特性和良好的时效性。 Aiming at the problem that traditional methods fail to deal with malicious attacks with arbitrary background knowledge during the process of massive data analysis, we pro- pose an improved Apriori algorithm preserving differential privacy, combining with Laplace mechanism to mine the pattern of sensitive information in framework of Spark. Further- more, it's theoretically proved to meet e-differential privacy in spark. Finally, experimental results show that guaranteeing availability, improved algorithm has an advantage over priva- cy protection and satisfaction in time as well as efficiency on the premise of quaranteeing a- vailability. Most importantly,algorithm shows a good application prospect in the analysis of data pattern mining preserving privacy protection. Also, it has better privacy protection and good timeliness on the premise of ensuring availability.
作者 李庆鹏 张龙军 李昊宇 LI Qingpeng ZHANG Longjun LI Haoyu(Postgraduate Brigade Department of Information Engineering, Engineering University of PAP, Xi'an 710086, China)
出处 《武警工程大学学报》 2017年第2期22-25,共4页 Journal of Engineering University of the Chinese People's Armed Police Force
关键词 内存计算框架 差分隐私 关联分析 模式挖掘 关联规则算法 spark differential privacy association analysis pattern mining association rule algorithm
  • 相关文献

参考文献10

二级参考文献96

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2姜传贤,孙星明,易叶青,杨恒伏.基于JADE算法的数据库公开水印算法的研究[J].系统仿真学报,2006,18(7):1781-1784. 被引量:9
  • 3Dean J, Ghemmawat S. MapReduce: simplied data processing on large clusters [ C ]//Proceedings of the 6th Sympesium on Operating System Design and Implementation. New York: ACM Press, 2004:137 -150.
  • 4Ranger C, Raghuraman R, Penmetsa A. Evaluating MapReduce for multicore and mutiprocessor systems [ C ] //Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture. Washington: IEEE Computer Society, 2007 : 13 -24.
  • 5Kruuf M D, Sankaralinggam K. MapReduce for the cell B.E. architecture [ R ]. Madison: University of Wisconsin - Madison, 2007.
  • 6He Bing - sheng, Fang Wen - bin, Naga K Govindaraju, et al. Mars : a MapReduce framework on graphics processors [ C ] // Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques. New York: ACM Press, 2008 : 260 "269.
  • 7Zaharia M, Konwinski A, Joseph A D. Improving MapReduce performance in heterogeneous environments [ C ] //Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation. New York: ACM Press, 2008:29 -42.
  • 8Tomwhite.Hadoop权威指南:中文版[M].曾大聃,周傲英,译.北京:清华大学出版社,2010.
  • 9Chu Chen -tao, Kim S K, Lin Yian, et al. Map -Reduce for machine learning on muhicore [ C]//Twentieth Annual Conference on Neural Information Processing Systems, Vancouver: [ s. n. ], 2006 : 281 - 288.
  • 10Yang Xinyue, Liu Zhen, Fu Yan. MapReduce as a programming model for lssociation rules algorithm on hadoop[ C ]//3rd International Conference on Information Sciences and Interaction Sciences. Chengdu: [ s. n. ], 2010.

共引文献1078

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部