期刊文献+

基于稀疏表示的非零井源距VSP波场分离方法 被引量:4

Offset VSP wave field separation based on sparse representation
下载PDF
导出
摘要 随着垂直地震剖面(VSP)技术的不断发展,高保真的波场分离成为VSP资料处理与应用的关键之一。引入欠定盲源分离思想,利用VSP波场的极化特征及多分量资料在时频域的稀疏性,提出一种基于稀疏表示的波场分离方法。该方法分为两步:第一步将地震信号变换到时频域,并估计极化矩阵;第二步在时频域分离各单一波场,再反变换回时间域。在第二步波场分离过程中,针对时频域波场稀疏性不足的情况,提出一种改进的最短路径分解法,在一定程度上解决了时频域局部信号混叠的问题。模型试算与实际资料处理结果表明,与传统方法相比该方法能够更准确地分离上、下行P-P波、P-SV波,分离后的波场保幅性较好,不存在混波、假频以及边界问题。 With the development of vertical seismic profile (VSP),high fidelity wave separation becomes one of key issues in VSP data processing and applications.According to underdetermined blind signal separation theory,a method based on sparse representation is presented in this paper.It depends on polarization characteristics of VSP wave field and sparsity of multi-component data in the time-frequency domain.The method has two stages: first,transforming seismic data from the time domain into the time-frequency domain and estimating polarization matrix; second,separating pure wave in the time-frequency domain and transforming it back into the time domain.It is difficult to acquire pure wave if it is not sparse enough in the time-frequency domain.In this paper,a modified shortest path decomposition method is presented,which can solve the problem of pure wave overlap in the local time-frequency area to a certain degree.Synthetic and real data examples show that with the proposed method every pure wave is accurately separated and amplitudes are well maintained without flaws such as wave mixing,aliasing,and boundary problem compared with conventional methods. © 2017, Editorial Department OIL GEOPHYSICAL PROSPECTING. All right reserved.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2017年第1期27-33,55,共8页 Oil Geophysical Prospecting
基金 国家自然科学基金项目(40872090)资助
关键词 非零井源距VSP 多分量 波场分离 欠定盲源分离 稀疏表示 Blind source separation Data handling Domain decomposition methods Frequency domain analysis Metadata Polarization Seismic prospecting Seismic waves Seismology
  • 相关文献

参考文献6

二级参考文献37

共引文献42

同被引文献74

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部