摘要
In order to study the basic superconductivity properties of R2Pt3Ge5, we synthesized the single crystalline samples by the Pt–Ge self-flux method. R2Pt3Ge5(R = La, Ce) were also grown for a systematic study. Zero-resistivity was observed in both the La-and Pr-based samples below the reported superconducting transition temperatures. However, magnetic susceptibility measurements showed low superconductivity volume fractions in both La2Pt3Ge5 and R2Pt3Ge5(less than2%). Ce2Pt3Ge5 did not show any signature of superconductivity. From the specific heat measurements, we did not observe a superconducting transition peak in R2Pt3Ge5, suggesting that it is not a bulk superconductor. The magnetic susceptibility and heat capacity measurements revealed two antiferromagnetic(AFM) orders in R2Pt3Ge5 at T(N1)= 4.2 K and T(N2)= 3.5K, as well as a single AFM transition at TN= 3.8 K in Ce2Pt3Ge5.
In order to study the basic superconductivity properties of R2Pt3Ge5, we synthesized the single crystalline samples by the Pt–Ge self-flux method. R2Pt3Ge5(R = La, Ce) were also grown for a systematic study. Zero-resistivity was observed in both the La-and Pr-based samples below the reported superconducting transition temperatures. However, magnetic susceptibility measurements showed low superconductivity volume fractions in both La2Pt3Ge5 and R2Pt3Ge5(less than2%). Ce2Pt3Ge5 did not show any signature of superconductivity. From the specific heat measurements, we did not observe a superconducting transition peak in R2Pt3Ge5, suggesting that it is not a bulk superconductor. The magnetic susceptibility and heat capacity measurements revealed two antiferromagnetic(AFM) orders in R2Pt3Ge5 at T(N1)= 4.2 K and T(N2)= 3.5K, as well as a single AFM transition at TN= 3.8 K in Ce2Pt3Ge5.
基金
Project supported by the National Natural Science Foundation of China(Grant No.11204041)
STCSM of China(Grant No.15XD1500200)