期刊文献+

A Parallel Actuated Pantograph Leg for High-speed Locomotion 被引量:2

A Parallel Actuated Pantograph Leg for High-speed Locomotion
原文传递
导出
摘要 High-speed running is one of the most important topics in the field of legged robots which requires strict constraints on structural design and control. To solve the problems of high acceleration, high energy consumption, high pace frequency and ground impact during high-speed movement, this paper presents a parallel actuated pantograph leg with an approximately decoupled configuration. The articulated leg features in light weight, high load capacity, high mechanical efficiency and structural stability. The similarity features of force and position between the control point and the foot are analyzed. The key design parameters, K1 and K2, which concern the dynamic performances, are carefully optimized by comprehensive evaluation of the leg inertia and mass within the maximum foot trajectory, A control strategy that incorporates virtual Spring Loaded Inverted Pendulum (SLIP) model and active force is also proposed to test the design. The strategy can implement highly flexible impedance without mechanical springs, which substantially simplifies the design and satisfies the variable stiffness requirements during high-speed running. The rationality of the structure and the effectiveness of the control law are validated by simulation and experiments. High-speed running is one of the most important topics in the field of legged robots which requires strict constraints on structural design and control. To solve the problems of high acceleration, high energy consumption, high pace frequency and ground impact during high-speed movement, this paper presents a parallel actuated pantograph leg with an approximately decoupled configuration. The articulated leg features in light weight, high load capacity, high mechanical efficiency and structural stability. The similarity features of force and position between the control point and the foot are analyzed. The key design parameters, K1 and K2, which concern the dynamic performances, are carefully optimized by comprehensive evaluation of the leg inertia and mass within the maximum foot trajectory, A control strategy that incorporates virtual Spring Loaded Inverted Pendulum (SLIP) model and active force is also proposed to test the design. The strategy can implement highly flexible impedance without mechanical springs, which substantially simplifies the design and satisfies the variable stiffness requirements during high-speed running. The rationality of the structure and the effectiveness of the control law are validated by simulation and experiments.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第2期202-217,共16页 仿生工程学报(英文版)
基金 This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61375097 and 61473105), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F2015008) and Self-Planned Task (No. SKLRS201620B, SKLRS201603C and SKLRS201502C) of State Key Laboratory of Robotics and System (HIT).
关键词 HIGH-SPEED parallel actuated pantograph leg optimization virtual SLIP model active force high-speed, parallel actuated pantograph leg, optimization, virtual SLIP model, active force
  • 相关文献

参考文献5

二级参考文献9

共引文献25

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部