摘要
针对一维对流扩散反应方程,基于对流扩散方程的四阶指数型紧致差分格式,以及一阶导数的四阶Padé公式,发展了一种高效求解对流扩散反应方程的混合型四阶紧致差分格式.数值实验结果验证了格式对于边界层问题或大雷诺数或大Pelect数的大梯度问题的求解的高精度和鲁棒性的优点.
A fourth-order hybrid compact finite difference method,based on the exponential high order compact finite difference scheme of the convection diffusion equation with constant coefficients,combined with the classical fourth-order Pad e scheme for first and second-order derivatives,is proposed for the one-dimension(1D) convection-diffusion-reaction equation.Numerical experiments,mostly with boundary layer where sharp gradients may appear due to high Peclet or Reynolds numbers,are conducted to verify the robustness and the high accuracy of this new method.
出处
《数学的实践与认识》
北大核心
2017年第7期168-175,共8页
Mathematics in Practice and Theory
基金
宁夏高等学校科学研究项目资助(NGY2016002)
关键词
对流扩散反应方程
高阶紧致差分格式
对流占优
边界层
convection-diffusion-reaction equation
high order compact difference scheme
convection dominant
boundary layer