期刊文献+

O_2在FeN_4掺杂碳纳米管上氢化特性的密度泛函理论研究 被引量:8

Density functional theory investigations of O_2 hydrogenation on FeN_4 doped carbon nanotubes
下载PDF
导出
摘要 因其速率快、稳定性高,非金属N与金属共掺杂的碳材料作为新型高效ORR催化剂而引起了人们的广泛关注.采用包含色散力校正的密度泛函理论方法系统地研究了氧分子在FeN_4掺杂的碳纳米管上的吸附、氢化特性.结果表明:(1)O_2倾向于以end-on模式吸附在Fe顶位,O-O键与衬底表面成一定角度,并指向五元环,对应的吸附能为1.62 e V.(2)O_2在FeN_4-CNTs上更倾向于直接氢化为OOH,然后解离为O+OH,整个路径的限速步为OOH的解离,对应的势垒为1.19 eV. Metal-coordinated nitrogen-doped carbon materials are attractive with high stability as alternative and efficient catalysts in oxygen reduction reaction (ORR). Density functional theory including dispersion corrections (DFT-D) is preformed to study the mechanisms of O2 adsorption and hydrogenation on FeN4 doped carbon nanotubes (FeN4-CNTs). It is found that: (1) O2 tends to stay on the top of the Fe with the end-on configuration, oxygen-oxygen bonds obliquely adsorbing on the surface and pointing to the five member ring. The corresponding adsorption energy is 1.62 eV. (2) O2 prefers to be hydrogenated directly into OOH on the FeN4-CNTs, and then to decompose into O + OH. The path rate-limiting step is the decomposition of the O2 with the reaction barrier of 1.19 eV.
出处 《原子与分子物理学报》 北大核心 2017年第2期250-254,共5页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(51401078 11147006) 河南省高校科技创新人才支持计划(15HASTIT016) "大学生创新训练项目"(201410476091)
关键词 FeN4掺杂的碳纳米管 O2氢化 DFT-D FeN4 doped carbon nanotubes Hydrogenation of O2 DFT - D
  • 相关文献

参考文献1

二级参考文献25

  • 1Boudghene Stambouli A, Traversa E. Fuel cells, an alternative to standard sources of energy [ J ]. Renew. Sust. Energ Rev. , 2002, 6(3): 295.
  • 2Steele B C H, Heinzel A. Materials for fuel - cell technologies[J]. Nature, 2001, 414(6861) : 345.
  • 3Greeley J, Stephens I E L, Bondarenko A S, et al. Alloys of platinum and early transition metals as oxy- gen reduction electrocatalysts [ J ]. Nat. Chem. , 2009, 1(7): 552.
  • 4Morozan A, Jousselme B, Palacin S. Low - platinum and platinum - free catalysts for the oxygen reduction reaction at fuel cell cathodes [ J ]. Energy Environ. Sci., 2011,4(4) : 1238.
  • 5Yu X Y, Ye S Y. Recent advances in activity and du- rability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durabil- ity enhancement of carbon supported platinum catalyst [J]. J. Power Sources, 2007, 172(1): 145.
  • 6Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single - layer graphene [ J ] . Nano Lett., 2008, 8 ( 3 ) : 902.
  • 7Guo S J, Dong S J, Wang E K. Three - dimensional Pt- on -Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation [J]. ACS Nano, 2009, 4(1): 547.
  • 8Stoller M D, Park S, Zhu Y W, et al. Graphene - based uhracapacitors[J]. Nano Lett. , 2008, 8(10) : 3498.
  • 9Wang L H, Pu K Y, Li J, et al. A graphene -conju- gated oligomer hybrid probe for light- up sensing of lectin and Escheriehia coli[ J]. Adv. Mater. , 2011, 23 ( 38 ) : 4386.
  • 10Wang S A, Ang P K, Wang Z Q, et al. High mobili- ty, printable, and solution- processed graphene elec- tronics[J]. Nano Lett. , 2009, 10(1) : 92.

共引文献9

同被引文献35

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部