期刊文献+

基于小数据决策的读者兴趣发现与预测 被引量:4

Discovering and Predicting Reader Interests Based on Small Date Decision Support
原文传递
导出
摘要 【目的/意义】读者的阅读兴趣可分为短期兴趣和长期兴趣,具有不稳定性。读者兴趣发现模型作为图书馆个性化服务推送的基础和核心,其准确性和时效性是图书馆个性化服务有效的关键。当前,采集读者的阅读行为信息,从中挖掘隐性知识并获取读者的阅读兴趣,已成为目前图书馆个性化服务一个重要的研究方向。【方法/过程】本文提出了一种基于小数据决策的读者兴趣发现与预测模型。【结果/结论】通过对读者小数据的测试和分析,可增强图书馆对读者服务需求预测的精度,提升图书馆个性化服务推荐的效率,改善图书馆个性化服务的质量,满足读者的个性化服务需求。 [Purpose/significance] Reader interests can be categorized into short-term interests and long-term interests, and may evolve over time.As the basis and core of the personalized service recommendation in library, the accuracy and effi- ciency of the user-interest discovery model is a key to the personalized service of library. Nowadays, it is an important re- search direction of personalized reading service of library to collect readers" reading behavior information resource for min- ing implicit knowledge and obtaining the reader interests. [ Method/process ] This paper proposed a discovering and predict- ing model for reader interests based on small date decision support. [Result/conclusion] Through testing and analysis on small data of reader, it can improve the prediction precision of reader service demand forecast, enhance the recommenda- tion efficiency of personalized service in library, improve quality of personalized service of library, and satisfy readers per- sonalized service needs.
作者 陈臣 李强
出处 《情报科学》 CSSCI 北大核心 2017年第5期75-80,共6页 Information Science
关键词 小数据 小数据决策 读者兴趣 发现与预测 small data small data decision support reader interests discovering and predicting
  • 相关文献

参考文献14

二级参考文献188

  • 1曹建军,刁兴春,陈爽,邵衍振.数据清洗及其一般性系统框架[J].计算机科学,2012,39(S3):207-211. 被引量:31
  • 2周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:72
  • 3郭岩,白硕,杨志峰,张凯.网络日志规模分析和用户兴趣挖掘[J].计算机学报,2005,28(9):1483-1496. 被引量:62
  • 4Stadnyk I, Kass R. Modeling users' interests in information filters. Communications of the ACM, 1992, 35(12): 49-50.
  • 5Halavais A, Lackaff D. An analysis of topical coverage of Wikipedia. Journal of Computer-Mediated Communication, 2008, 13(2): 429-440.
  • 6Kittur A, Chi E H, Suh B. What's in wikipedia: Mapping topics and conflict using socially annotated category struc- ture//Proceedings of the ACM Conference on Human Factors in Computing Systems. Boston, USA, 2009:1509-1512.
  • 7Lin Tsun-Chen, Liu Ru-Sheng, Chen Shu-Yuan, Liu Chen- Chung, Chen Chieh-Yu. Genetic algorithms and silhouette measures applied to microarray data classification//Proceed- ings of the 3rd Asia-Pacific Bioinformatics Conference. Singapore, 2005:229-238.
  • 8Plangprasopchok A, Lerman K, Getoor L. Growing a tree in the forest: Constructing folksonomies by integrating struc- tured metadata//Proceedings of the Conference on Knowl- edge Discovery and Data Mining. Washington, USA, 2010: 949-958.
  • 9Han Jia-Wei, Kamber M, Pei Jian. Data Mining: Concepts and Technologies. 3rd Edition. Massachusetts, USA: Morgan Kaufmann Publishers, 2011.
  • 10Segaran T. Programming Collective Intelligence: Building Smart Web 2.0 Applications. USA: O'Reilly Media, 2007.

共引文献378

同被引文献74

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部