期刊文献+

Harnack estimate for a semilinear parabolic equation 被引量:1

Harnack estimate for a semilinear parabolic equation
原文传递
导出
摘要 We study the Cauchy problem of a semilinear parabolic equation. We construct an appropriate Harnack quantity and get a differential Harnack inequality. Using this inequality, we prove the finite-time blow-up of the positive solutions and recover a classical Harnack inequality. We also obtain a result of Liouville type for the elliptic equation. We study the Cauchy problem of a semilinear parabolic equation. We construct an appropriate Harnack quantity and get a differential Harnack inequality. Using this inequality, we prove the finite-time blow- up of the positive solutions and recover a classical Harnack inequality. We also obtain a result of Liouville type for the elliptic equation.
出处 《Science China Mathematics》 SCIE CSCD 2017年第5期833-840,共8页 中国科学:数学(英文版)
关键词 parabolic equation Harnack estimate finite-time blow-up 半线性抛物方程 估计 椭圆型方程 不等式 柯西问题 有限时间 微分 正解
  • 相关文献

参考文献1

二级参考文献15

  • 1Ma, L.: Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds. J, Funct. Anal., 241, 374-382 (2006).
  • 2Yang, Y.: Gradient estimates for a nonlinear paprabolic equation on Riemannian manifolds. Proc. Amer. Math. Soc., 136, 4095-4102 (2008).
  • 3Li, P., Yau, S. T.: On the parabolic kernel of the Schrodinger operator. Acta Math., 156(3-4), 153-201 (1986).
  • 4Hamilton, R. S.: The Harnack estimate for the Ricci flow. J. Differential Geom., 37(1), 225-243 (1993).
  • 5Hamilton, R. S.: The Ricci flow on surfaces. In: Mathematics and general relativity (Santa Cruz, CA, 1986), Amer. Math. Soe., Providence, RI, Berlin, 1988, 237-262.
  • 6Chow, B.: Thc Ricci flow on the 2-sphere. J. Differential Geom., 33(2), 325-334 (1991).
  • 7Perelman, G.: The entropy formula for tile Ricci flow and its geometric applications. 2002, arXiv: math.DG/0211159.
  • 8Chow, B.: On Harnack's inequality and entropy for the Gaussian curvature flow. Comm. Pure Appl. Math., 44(4), 469 483 (1991).
  • 9Chow, B.: The Yamabe flow on locally conformally flat manitblds with positive Ricci eurvature. ('omm. Pure Appl. Math., 45(8), 1003-1014 (1992).
  • 10Ni, L.: A matrix Li Yau Hamilton estimate for Kahler Ricci flow. J. Differential Geom., 75(2), 303 358 (2007).

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部