期刊文献+

基于改进l_1范数和稀疏表示的SAR与可见光图像快速融合算法

A fast fusion algorithm of SAR and optical images based on improved l_1 norm and sparse representation
下载PDF
导出
摘要 针对多尺度融合算法中合成孔径雷达(SAR)与可见光图像融合结果目标信息易缺失、对比度不高的缺点,提出了一种基于改进l_1范数和稀疏表示的图像融合算法,以有效保留源图像的目标信息。首先对SAR与可见光图像经支持度变换(SVT)分解得到的低频系数进行过完备稀疏融合,采用改进l_1范数的稀疏系数融合规则以有效保留源图像目标信息,并进行零均值化处理提高了算法运行效率,然后利用基于区域能量的高频融合规则,最大化保留边缘纹理等细节信息。实验结果证明了该算法的有效性。 Aiming at the disadvantages of easy-to-loss target information and low contrast images of the fusion images of Synthetic Aperture Radar (SAR) and optical images in multi-scale fusion algorithm, a fast fusion algorithm of SAR and optical images based on improved l1 norm and sparse representation is proposed to retain target information of the source images effectively. Firstly over-complete sparse fusion is done to the low frequency coefficient got in Support Value Transform (SVT) of SAR and optical images sparse coefficient ., and based a fusion rule with improved on l1 norm is used to retain target information of the source images effectively. Then zero mean processing is done to improve the algorithm efficiency. Finally the high frequency fusion rules based on regional energy is used to maximize the details of edge texture. The experiment results demonstrate the effectiveness of the algorithm.
作者 张素华
出处 《传感器世界》 2017年第4期7-12,共6页 Sensor World
关键词 合成孔径雷达(SAR) 图像融合 支持度变换(SVT) 稀疏表示 L1 范数 Synthetic Aperture Radar(SAR) image fusion Support Value Transform(SVT) sparse representation l1 norm
  • 相关文献

参考文献4

二级参考文献32

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部