期刊文献+

Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange--Influence of material properties,sorption mechanism and modeling 被引量:6

Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange——Influence of material properties,sorption mechanism and modeling
原文传递
导出
摘要 Perfluorooctane sulfonate(PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force(LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient βs.The big difference in the initial mass transfer coefficient βs,0, when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate.But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range. Perfluorooctane sulfonate(PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force(LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient βs.The big difference in the initial mass transfer coefficient βs,0, when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate.But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期160-170,共11页 环境科学学报(英文版)
基金 the funding of the present study by the German Federation of Industrial Research Associations(AiF)(FKZ VP 2470101RH9)
关键词 PFOS Activated carbon Anion exchange resin Sorption kinetics modeling Sorption isotherm Selectivity of sorption PFOS Activated carbon Anion exchange resin Sorption kinetics modeling Sorption isotherm Selectivity of sorption
  • 相关文献

同被引文献45

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部