摘要
车用永磁同步电机在运行过程中复杂的工况和恶劣的工作条件会影响电机的参数进而影响电机控制性能。本文采用自适应的参数辨识算法,对永磁同步电机参数进行在线辨识并反馈回电机控制系统,改进原有控制参数。该算法基于永磁同步电机的数学模型,根据转速电流反馈信号,借助Lyapunov稳定理论建立负载转矩和交直轴电感的辨识模型并推导其自适应律。基于MTPA算法的仿真和实验结果表明本文提出的参数辨识算法能够在较短时间内实现高效的参数辨识,且估计值与真实值的误差较小。
In the course of running, the complex working condition and the bad working condiUon ot the permanent-magnet synchronous motor (PMSM) affect the parameters of the motor and affect the motor control performance. In this paper, an adaptive parameter identification algorithm is used to identify the pa- rameters of permanent magnet synchronous motor (PMSM) to feed back to the motor control system. Based on the mathematical model of permanent magnet synchronous motor (PMSM), the identification model of load torque and dq axis inductance is established by means of Lyapunov stability theory and then the adaptive law is deduced. Simulation and experimental results based on the MTPA algorithm show that the proposed parameter identification algorithm can achieve efficient parameter identification in a short time, and the error between the estimated value and the real value is small.
出处
《传动技术》
2017年第1期10-13,22,共5页
Drive System Technique
关键词
永磁同步电机
自适应
在线参数辨识
MTPA
permanent magnet synchronous motor Adaptive online parameter identification MTPA