期刊文献+

靶向剪切AAVS1位点CRISPR/Cas9腺病毒系统的构建 被引量:3

Construction of Adenovirus-Mediated CRISPR/Cas9 System Targeting AAVS1 Locus
原文传递
导出
摘要 本研究拟使用腺病毒介导的CRISPR/Cas9系统靶向剪切AAVS1位点,为实现AAVS1位点基因定点插入奠定基础。设计针对AAVS1位点的gRNA序列,连接到pENTRY-U6-h EF1a-Cas9载体,通过Gateway技术重组到腺病毒骨架质粒pAD,转染293A细胞包装腺病毒。腺病毒感染Hela细胞系,使用T7E1酶切及测序检测AAVS1位点的打靶效率。T7EI酶切结果显示腺病毒介导的CRISPR/Cas9系统剪切效率达到28.5%。腺病毒介导的CRISPR/Cas9系统对AAVS1位点成功实施了剪切,为下一步在Hela细胞内进行基因定点敲入及基因治疗奠定了基础。 In this study, we intended to use the adenovirus-mediated CRISPR/Cas9 system to cut the AAVS1 locus so as to lay the foundation for the fixed-point insertion of gene in AAVS 1 locus. The gRNA of the AAVS 1 locus was designed, which was connected to the pENTRY-U6-hEFla-Cas9 vector, and then it was connected to recombinant adenovirus vector pAD through the Gateway technology to transfect 293A cell to generate adenovirus. Then, adenovirus infected Hela cell. What's more, the TTE1 enzyme digestion and sequencing were used to detect targeting efficiency of AAVS 1 locus. The results of T7E 1 enzyme digestion showed that the shearing efficiency of adenovirus-mediated CRISPR/Cas9 system reached 28.5%. In addition, adenovirus-mediated CRISPR/Cas9 system successfully shear AAVS 1 locus, which laid the foundation for the next gene knock-in and gene therapy in Hela cells.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2017年第4期1355-1360,共6页 Genomics and Applied Biology
基金 国家级大学生创新创业训练计划项目 广西大学生创新创业训练计划项目(项目编号:201610594051) 广西科技大学校级项目(校科医1307206)共同资助
关键词 AAVS1位点 CRISPR-CAS9 基因敲除 腺病毒系统 AAVS 1 locus, CRISPR-CAS9, Gene knockout, Adenovirus system
  • 相关文献

参考文献1

二级参考文献27

  • 1Angrand P.O., Apiou F., Stewart A.F., Dutrillaux B., Losson R., and Chambon P., 2001, NSD3, a new SET domain-contain- ing gene, maps to 8p12 and is amplified in human breast cancer cell lines, Genomics, 74(1): 79-88.
  • 2Auer T.O., Duroure K., De Cian A., Concordet J.P., and Del Bene F., 2014, Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA re- pair, Genome Res., 24(1): 142-153.
  • 3Chari R., Mali P., Moosbumer M., and Church G.M., 2015, Un- raveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach, Nat. Methods, 12(9): 823-826.
  • 4Doench J.G., Hartenian E., Graham D.B., Tothova Z., Hegde M., Smith I., S Llender M., Ebert B.L., Xavier R.J., and Root D. E., 2014, Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation, Nat Biotechnol, 32(12): 1262-1267.
  • 5He Y., Wang Z., Sun S., Tang D., Li W., Chai R., and Li H., 2015, HDAC3 Is Required for Posterior Lateral Line Devel- opment in Zebrafish, Mol. Neurobiol., 1-15.
  • 6Hinz J.M., Laughery M.F., and Wyrick J.J., 2015, Nucleosomes inhibit Cas9 endonuclease activity in vitro, Biochemistry, 54 (48): 7063-7066.
  • 7Howe K., Clark M.D., Torroja C.F., Torrance J., Berthelot C., Muffato M., Collins J.E., Humphray S., Mclaren K., Matthews L., Mclaren S., Sealy I., Caccamo M., Churcher C., Scott C., Barrett J.C., Koch R., Rauch G.J., White S., Chow W., Kilian B., Quintais L.T., Guerra-Assuncao J.A., Zhou Y., Gu Y., Yen J., Vogel J.H., Eyre T., Redmond S., Banerjee R., Chi J., Fu B., Langley E., Maguire S.F., LairdG.K., Lloyd D., Kenyon E., Donaldson S., Sehra H., Almei- da-King J., Loveland J., Trevanion S., Jones M., Quail M., Willey D., Hunt A., Burton J., Sims S., Mclay K., Plumb B., Davis J., Clee C., Oliver K., Clark R., Riddle C., Elliot D., Threadgold G., Harden G., Ware D., Begmn S., Mortimore B., Kerry G., Heath P, Phillimore B., Tracey A., Corby N., Dunn M., Johnson C., Wood J., Clark S., Pelan S., Griffiths G., Smith M., Glithero R., Howden P., Barker N., Lloyd C., Stevens C., Harley J., Holt K., Panagiotidis G., Lovell J., Beasley H., Henderson C., Gordon D., Auger K., Wright D., Collins J., Raisen C., Dyer L., Leung K., Robertson L., Am- bridge K., Leongamomlert D., Mcguire S., Gilderthorp R, Griffiths C., Manthravadi D., Nichol S., Barker G., White- head S., Kay M., Brown J., Mumane C., Gray E., Humphries M., Sycamore N., Barker D., Saunders D., Wal- lis J., Babbage A., Hammond S., Mashreghi-Mohammadi M., Barr L., Martin S., Wray P., Ellington A., Matthews N., Ellwood M., Woodmansey R., Clark G, Cooper J., Tromans A., Gratham D., Skuce C., Pandian R., Andrews R., Harri- son E., Kimberley A., 2013, The zebrafish reference genome sequence and its relationship to the human genome, Nature, 496(7446): 498-503.
  • 8Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., and Zhang F., 2013, DNA tar- geting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31(9): 827-832.
  • 9Jacques-Fricke B.T., and Gammill L.S., 2014, Neural crest speci- fication and migration independently require NSD3-related lysine methyltransferase activity, Mol. Biol. Cell, 25 (25): 4174-4186.
  • 10Jao L.E., Wente S.R., and Chen W., 2013, Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system, Proc. Natl. Acad. Sci. USA, 110(34): 13904-13909.

共引文献3

同被引文献6

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部