期刊文献+

水平分层大地电导率对倾斜通道LEMP场影响研究 被引量:1

The Influence of Horizontal Layered Ground Conductivity on Oblique Discharge Channel LEMP EM Fields
下载PDF
导出
摘要 为了得到水平分层条件下,放电通道倾斜角度、大地电导率以及分层土壤厚度对倾斜通道雷电电磁脉冲(LEMP)场的影响规律,在差分条件下对三维直角坐标系的倾斜放电通道加源方程进行了推导,在此基础上利用时域有限差分(FDTD)法对倾斜通道雷电电磁场进行了建模。研究结果表明,当放电通道倾斜角度改变时,雷电电磁场峰值会随着倾斜角度的增加而出现明显的上升,同时观测点与雷击点之间的距离越大倾斜角度对电磁场的影响越明显。当电导率发生改变时,上层电导率主要影响电磁场的峰值,而底层土壤电导率主要影响电磁场的下降沿陡度和波尾幅值,对电磁场峰值影响较小,基本可以忽略。此外,电场波形的下降沿陡度随土壤上层电导率的减小而增加,随下层电导率的减小而降低。当上层土壤厚度改变时,在影响深度范围内电场波尾幅值会随着上层厚度的增加而增加,但电磁场峰值基本不受影响,而且随着水平距离的增加表层土壤的影响深度在不断加大。 In order to get the influence of tilt angle, horizontal layered ground conductivity and layered soil thickness on oblique channel lightning EM pulse (LEMP) fields, the current source equations of oblique channel lightning EM fields are derived under conditions of finite-difference. After that the finite-difference time-domain (FDTD) method was used in 3-D Cartesian coordinate system to calculate EM fields generated by oblique discharge channel. The results show that, the peak value of EM fields will increase with the increasing of the tilt angle, moreover, the impact of tilt angle on EM fields will be more greater with the increasing of the distance. When ground conductivity changes, the upper layer ground conductivity mainly affects the peak of EM field and the lower layer ground conductivity mainly influences the falling edge steepness and the wave tail amplitude of EM fields. Apart from that, the falling edge steepness of electric fields will increase with the de- crease of the upper layer ground conductivity and decrease with the decrease of the lower layer ground conductivity. When the upper layer thickness changes, it has little effect on the peak of EM field, but the wave tail amplitude of electric field will in- crease with the increase of the upper layer thickness. Moreover, with the increase of horizontal distance the sphere of influ- ence of upper layer ground thickness will be expanded.
出处 《微波学报》 CSCD 北大核心 2017年第2期89-96,共8页 Journal of Microwaves
基金 国家自然科学基金(51377171)
关键词 雷电电磁脉冲 雷电回击电磁场 时域有限差分法 分层大地电导率 倾斜放电通道 土壤厚度 Lightning electromagnetic pulse,lightning return stroke EM fields, finite-difference time-domain method, layered ground conductivity, oblique discharge channel, soil thickness
  • 相关文献

参考文献9

二级参考文献73

  • 1吴璞三.雷电定向定位和时差定位系统[J].高电压技术,1995,21(3):3-7. 被引量:25
  • 2代少玉,吴振森,徐仰彬.用基于Daubechies尺度函数的时域多分辨分析计算电磁散射[J].物理学报,2007,56(2):786-790. 被引量:5
  • 3[1]M. A. Uman, D. K. McLain, and E. P. Krider. The electromagnetic radiation from a finite antenna[J]. A. J. Phys., January 1975, 43: 33~38.
  • 4[2]M. J. Master and M. A. Uman. Transient electric and magnetic fields associated with establishing a finite electrostatic dipole[J]. Am. J. Phys., 1983, 51(2): 118~126.
  • 5[3]V. A. Rakov. Lightning Electromagnetic fields: modeling and measurements[M]. in Proc. 12th Int. Zurich Symp. Electromagn. Compat., Zurich, Switzerland, Feb. 1997: 59~64.
  • 6[4]V. A. Rakov and M. A. Uman. Review and evaluation of lightning return stroke models including some aspects of their application[J]. IEEE Trans. Electromagn. Compat., November 1998, 40(4): 403~426.
  • 7[5]C. E. R. Bruce and R. H. Golde. The lightning discharge[J]. Inst. Elec. Eng.-Pt. 2, 1941, 88: 487~520.
  • 8[6]F. Heilder, Traveling current source model for LEMP calculation[M]. in Proc. 6th Int. Zurich Symp. Electromagn. Compat., Zurich, Switzerland, Mar. 1985: 157~162.
  • 9[7]F. Heidler, J. M. Cvetic′, and B. V. Stanic′, Calculation of lightning current parameters[J].IEEE. Trans. Power Delivery, April 1999, 14(2): 399~404.
  • 10[8]C. A. Nucci, G. Diendorfer and M. A. Uman, F. Rachidi, M. Ianoz, and C. Mazzetti. Lightning return stroke current models with specified channel-base current: a review and comparison[J]. Geophys. Res., 1990, 95: 20395~20408.

共引文献71

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部