期刊文献+

一类具有免疫反应的时滞病毒模型的稳定性

The Stability of a Delay Virus Model With Immune Response
下载PDF
导出
摘要 建立具有免疫反应的时滞HIV动力学模型,引入以表示机体免疫系统从接受抗原刺激到产生新的毒性T淋巴细胞(CTL)所产生的时间为时滞参数。讨论系统解的非负性和有界性,得到确定模型动力学性态的基本再生数。通过构造适当的Lyapunov函数,应用LaSalle不变原理,证明了当基本再生数小于1时,无病平衡点全局渐近稳定,此时HIV在个体体内最终灭绝。最后利用Matlab软件进行数值模拟,验证了理论结果的合理性。 In this paper,we built a delay HIV dynamics model with immune response, which incorporates the duration for the the body's immune system from receiving antigen stimulation to produce new eytotoxic lymphocyte (CTL) as the delay parameter. Then discussed the nonnegativity and boundedness of the solution. The basic reproduction number is obtained,which determines the dynamical behaviors of the infection model. By constructing suitable Lyapunov functions and applying LaSalle's invariance principle we have proven that when the basic reproduction number is less than 1 ,the infection -free equilibrium is globally asymptotically stable, which implies that HIV dies out in - host eventually. At last the numerical simulation is given with the Matlab software, and the rationality of the theoretical result is verified.
机构地区 山西大同大学
出处 《忻州师范学院学报》 2017年第2期4-7,13,共5页 Journal of Xinzhou Teachers University
基金 国家青年科学基金项目(2014Q10 2015K5)
关键词 病毒 全局稳定性 免疫反应 李雅普诺夫函数 virus global stability immune response Lyapunov function
  • 相关文献

参考文献6

二级参考文献54

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2Bonhoeffer S, May R M, Shaw G M and Nowak M A. Virus dynamics and drug therapy[J]. Proc Natl Acad SciUSA, 1997(94): 6971-6976.
  • 3Nowak M A and May R M. Virus Dynamics:Mathematical Principles of Immunology and Virology[M]. New York: Oxford University Press, 2000.
  • 4Andrei Korobeinikov, Global properties of basic virus dynamics models[J]. Bulletin of Mathematical Biology, 2004(66): 879-883.
  • 5Wang K, Wen W, Pang H, Liu X. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica D, 2007(226): 197-208.
  • 6Canabarro A A, Gdra I M, Lyra M L. Periodic solutions and chaos in a non-linear model for the delayed cellular immune response[J]. Physica A, 2004(342): 234-241.
  • 7Nelson P W, Perelson A S. Mathematical analysis of a delay differential equation models of HIV-1 infection[J]. Math Biosci, 2002(179): 74-79.
  • 8Gang Huang, Wanbiao Ma, Yasuhiro Takeuchi. Global properties of virus dynamics model with Beddington-DeAngelis functional response[J]. Applied Mathematics Letters, in press.
  • 9W NELSON, S PERELSON. Mathematical analysis of delay differential equation models of HIV-1 infection [J]. Mathematical Biosciences , 2002, 179(1): 73--94.
  • 10L WANG, M Y LI. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells [J].Mathematical Biosciences, 2006, 200 (1) : 44-- 57.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部