期刊文献+

基于Lanczos算法的对称非负矩阵分解初始化方法

A Lanczos-based Initialization Method for Symmetric Nonnegative Matrix Factorization
下载PDF
导出
摘要 为提高对称非负矩阵分解算法的效率,提出了一种基于Lanczos三角化的对称非负矩阵分解初始化方法。该方法可与现有的对称非负矩阵分解算法相结合取得更高的效率.实验表明,现有的对称非负矩阵分解算法与文中提出的初始化方法相结合可以收敛到一个较优解. Symmetric nonnegative matrix factorization(SNMF) has widely employed in many areas of applications. For improving the efficiency of SNMF algorithms, the authors proposed a novel Lanczostridiagonalization-based initialization method for SNMF, which can be combined with existing SNMF algorithms and achieve higher efficiency. Experiments showed that the SNMF algorithm which combined the proposed initialization method can converges to a better solution.
出处 《嘉应学院学报》 2017年第2期24-28,共5页 Journal of Jiaying University
关键词 对称非负矩阵分解 初始化 Lanczos三角化 symmetric nonnegative matrix factorization(SNMF) initialization Lanczos tridiagonalization
  • 相关文献

参考文献2

二级参考文献23

  • 1张颖,余英林.鲁棒性增强的ART1神经网络[J].华南理工大学学报(自然科学版),1994,22(5):72-79. 被引量:1
  • 2Berry M W,Browne M,Langvile A N,et al.Algorithmsand applications for approximation nonnegative matrixfactorization[J].Comput Stat Data Anal,2007,52:115-173.
  • 3Paatero P.Least squares formulation of robust non-nega-tive factor analysis[J].Chemom Intell lab,1997,37:23-35.
  • 4Paatero P,Tapper U.Positive matrix factorization:a non-negative factor model with optimal utilization of error es-tiamtes of data values[J].Environmetrics,1994,5:111-126.
  • 5Lee D D,Seung H S.Algorithm for non-negative matrixfactorization[J].Adv Neural Inf Process Syst,2001,13:556-562.
  • 6Boutsidis C,Gallopoulos E.SVD based initialization:a h-ead start of non-negative matrix factorization[J].PatternRecognition,2008,41:1350-1362.
  • 7Gloub G H,Van Loan C F.Matrix computation[M].3rd.Baltimore,MD:The Johns Hopkins University Press,1996.
  • 8Cohen J,Rothblum U.Nonnegative ranks,decompositio-n,and factorizations of nonnegative matrices[J].LinearAlgerbra Appl,1993,190:149-168.
  • 9Bengio Y, Courvilte A, Vincent P. Representation lear- ning: a review and new perspectives [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2013,35 (8) :1798-1828.
  • 10Lee D D, Seung H S. Learning the parts of objects by non- negative matrix factorization [J]. Nature, 1999,401 (6755) : 788-791.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部