期刊文献+

基于GA-BP神经网络的水轮机非线性建模方法研究 被引量:12

Research on Nonlinear Modeling Method of Hydraulic Turbine Based on GA-BP Neural Networks
下载PDF
导出
摘要 建立精确的水轮机模型是水轮机调节系统有效建模仿真的关键。运用基于遗传算法改进反向传播神经网络的GA-BP神经网络对水轮机工作特性进行非线性拟合建模。详细介绍了利用水轮机模型综合特性曲线与飞逸特性曲线获取水轮机流量特性与力矩特性样本数据的方法,并对基本样本数据进行补充延伸。结合BP神经网络与遗传算法两者优点构建了GA-BP神经网络,利用所得样本数据进行训练,获得了基于GA-BP神经网络的水轮机非线性模型,并与传统BP神经网络在水轮机流量特性和力矩特性拟合效果上进行对比试验。仿真结果验证了论文提出方法的可行性和优越性。 The establishment of accurate hydraulic turbine model is a key to the effective modeling and simulation of hydraulic turbine gover- ning system. GA-BP neural networks based on back propagation neural networks with genetic algorithm is used to model the nonlinear charac- teristics of the hydraulic turbine. This paper presents the method of obtaining the sample data of hydraulic flow characteristics and torque characteristics of turbine by using the comprehensive characteristic curve and the runaway characteristic curve of hydraulic turbine model. And the basic sample data has been extended as much as possible. GA-BP neural network is developed with BP neural networks and genetic algorithm. The nonlinear model of hydraulic turbine based on GA-BP neural network is obtained by using the sample data for training. Com- pared with the BP neural networks in the simulation of the flow characteristics and torque characteristics of hydraulic turbines. The simulation results show that the proposed method is feasible and superior.
出处 《中国农村水利水电》 北大核心 2017年第4期184-188,193,共6页 China Rural Water and Hydropower
基金 国家自然科学基金项目(51379160)
关键词 水轮机 流量特性 力矩特性 GA-BP神经网络 建模 hydraulic turbine flow characteristics torque characteristics GA-BP neural network modeling
  • 相关文献

参考文献5

二级参考文献26

共引文献212

同被引文献108

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部