期刊文献+

基于流程树的可配置业务流程片段合并方法

Configuration Business Process Fragment Merging Method Based on Process Tree
下载PDF
导出
摘要 为了提高复杂系统的建模效率,通过合并相似的流程模型来建立可配置的流程模型已成为新的趋势。目前对于可配置建模的研究主要集中于直接合并整个流程模型,但这种方法的计算量大且复杂性高。本文提出了基于流程树的可配置业务流程片段合并方法,首先基于业务流程建立源模型,并将源模型转换成流程树,在流程树中进行块结构的划分和合并得到一个可配置的流程树以及用BPMN语言表达的可配置的流程片段。最后通过预订酒店订单处理流程系统验证了该方法的有效性。 In order to improve the modeling efficiency of complex systems, merging similar process models to establish a eonfigurable model has been a new trend. At present, the research of eonfigurable modeling is mainly focused on the direct combination of the whole process model, but the calculation of this method is large and complex. In this paper, we propose a merging method which has configurable business process fragment based on process tree. Firstly, based on the business process we establish a source model, and this source model will be converted into a process tree. Then we obtain a configurable process tree by using block structure partitioning and merging in the process tree, at the same time we also find fragment expressed in BPMN language. Finally, we verify the effectiveness of this method by the hotel order processing system.
出处 《佳木斯大学学报(自然科学版)》 CAS 2017年第2期270-274,290,共6页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金项目(61572035 61272153 61402011) 安徽省自然科学基金(1508085MF111 1608085QF149) 安徽省高校自然科学基金重点项目(KJ2016A208) 安徽省学术和技术带头人资助项目(DG119) 安徽省优秀青年人才项目(ZY290)
关键词 流程模型合并 可配置的流程片段 流程树 process model merging configurable process fragment process tree
  • 相关文献

参考文献2

二级参考文献31

  • 1Computing community consortium,computing research association.Advancing discovery in science and engineering [R].Computing Community Consortium,Computing Research Association,Springer 2011.
  • 2Computing community consortium,computing research association.Advancing personalized education [R].Computing Community Consortium,Computing Research Association,Springer,2011.
  • 3Smart health and wellbeing [R].Computing Community Consortium,Computing Research Association,Springer,2011.
  • 4WEST D M.Big data for education:Data mining,data analytics,and web dashboards [R].Washington,USA,Governance Studies at Brookings,2012.
  • 5MANYIKA J,CHUI M,BROWN B,BUGHIN J,DOBBS R,ROXBURGH C,BYERS A.Big Data:The next frontier for innovation,competition,and productivity [R].McKinsey Global Institute,2011.
  • 6CASTRO F,VELLIDO A,NEBOT A,MUGICA F.Applying data mining techniques to e-learning problems [J].Studies in Computational Intelligence,2007,62:183-221.
  • 7LIU Xue-cheng.Entropy,distance measure and similarity measure of fuzzy sets and their relations [J].Fuzzy Sets and Systems,1992,52:305-318.
  • 8FISHER D H.Knowledge acquisition via incremental conceptual clustering [J].Machine Learning,1987,2:139-172.
  • 9JAIN A K,DUBES R C.Algorithms for clustering data [M].Prentice-HAll,1988:78-110.
  • 10MURTAGH F.A survey of recent hierarchical clustering algorithms [J].The Computer Journal,1983,26(4):354-359.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部