期刊文献+

基于类内类间判据与遗传算法的故障特征选择方法 被引量:2

Fault feature selection method based on within-class and among-class criterion and genetic algorithm
下载PDF
导出
摘要 针对原始故障数据集因"高维"和"海量"引发的"维数灾难"问题,提出一种基于类内类间距离判据和遗传算法相结合的故障特征选择方法.在提取出时域、频域、小波包频带能量作为描述系统状态的原始故障特征集基础上,经类内类间距离判据初次选择剔除不相关特征之后,引入遗传算法二次选择去除冗余特征,得到一种近似最优特征子集.结果表明:基于类内类间距离判据和遗传算法的故障特征选择方法可以剔除不相关和冗余特征,最终得到精简特征子集,并且筛选出的特征子集对故障类型的判别有很高的识别能力. Aimed at the "dimension disaster" problem caused by "multi-dimension" and "massiveness" of faults data set, an effective fault feature selection method is proposed based on within-class and among- class distance criterion and genetic algorithm. The time-domain and frequency-domain characteristics and frequency band energy of wavelet package were extracted to make a faults data set as the description of the original system state. Then, the faults features were first selected based on within-class and among-class distance criterion and the irrelevant features were eliminated. To remove the redundant features and get optimal feature subset, the genetic algorithm was introduced to make this second selection. The result showed that the faults feature selection method based on within-class and among-class distance criterion and genetic algorithm could be used to eliminate irrelevant and redundant features and finally get the finely reduced features subset. The selected features subset would have a high identification ability of faults type.
出处 《兰州理工大学学报》 CAS 北大核心 2017年第2期35-39,共5页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(51675253)
关键词 特征选择 类内类间距离判据 遗传算法 不相关特征 冗余特征 feature selection within-class and among-class distance criterion genetic algorithm irrele- vant feature redundant feature
  • 相关文献

参考文献7

二级参考文献60

共引文献84

同被引文献13

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部