摘要
探讨了半带型区域上二维Poisson方程只含有一个空间变量的未知源识别反问题.这类问题是不适定的,即问题的解(如果存在)不连续依赖于测量数据.利用拟边界正则化方法,得到问题的一个正则近似解,并且给出正则解和精确解之间具有Hler型误差估计.数值实验表明拟边界正则化方法对于这种未知源识别反问题是非常有效的.
The inverse problem of identification of unknown source in two-dimensional Poisson equation with only one space variable in a half-band domain is explored. Such problem is ill-posed in the sense that its solution (if exists) does not depend continuously on the measured data. A regular approximate solution of the problem is obtained with the method of quasi-boundary regularization. Moreover, the Holer-type er- ror estimate between regularization solution and exact solution is given. Numerical experiment shows that the quasi-boundary regularization method will be very effective for such inverse problem of unknown source identification.
出处
《兰州理工大学学报》
CAS
北大核心
2017年第2期152-155,共4页
Journal of Lanzhou University of Technology
基金
国家自然科学基金(11561045
11501272)
关键词
拟边界
POISSON方程
未知源
正则化
反问题
quasi-boundary
Poisson equation
unknown source
regularization
inverse problem