期刊文献+

Poisson方程未知源识别的拟边界正则化方法 被引量:2

Quasi-boundary regularization method for identifying unknown source in Poisson equation
下载PDF
导出
摘要 探讨了半带型区域上二维Poisson方程只含有一个空间变量的未知源识别反问题.这类问题是不适定的,即问题的解(如果存在)不连续依赖于测量数据.利用拟边界正则化方法,得到问题的一个正则近似解,并且给出正则解和精确解之间具有Hler型误差估计.数值实验表明拟边界正则化方法对于这种未知源识别反问题是非常有效的. The inverse problem of identification of unknown source in two-dimensional Poisson equation with only one space variable in a half-band domain is explored. Such problem is ill-posed in the sense that its solution (if exists) does not depend continuously on the measured data. A regular approximate solution of the problem is obtained with the method of quasi-boundary regularization. Moreover, the Holer-type er- ror estimate between regularization solution and exact solution is given. Numerical experiment shows that the quasi-boundary regularization method will be very effective for such inverse problem of unknown source identification.
出处 《兰州理工大学学报》 CAS 北大核心 2017年第2期152-155,共4页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(11561045 11501272)
关键词 拟边界 POISSON方程 未知源 正则化 反问题 quasi-boundary Poisson equation unknown source regularization inverse problem
  • 相关文献

参考文献6

二级参考文献34

  • 1李功胜,谭永基.A CONDITIONAL STABILITY FOR AN INVERSE PROBLEM ARISING IN GROUNDWATER POLLUTION[J].Numerical Mathematics A Journal of Chinese Universities(English Series),2005,14(3):217-225. 被引量:7
  • 2赵廷刚.Chebyshev-Legendre拟谱方法解非经典抛物型方程[J].兰州理工大学学报,2006,32(2):147-149. 被引量:2
  • 3冯立新,屈彦呈.Poisson方程反问题的惟一性和稳定性[J].中国科学(A辑),2007,37(5):595-604. 被引量:2
  • 4LI G S. Data compatibility and conditional stability for an inverse source problem in the heat equation [J].Applied Mathematics and Computation, 2006,173 (1) : 566-581.
  • 5YI Z, MURIO D A. Source term identification in 1-D IHCP [J]. Computers and Mathematics with Applications, 2004,47: 1921-1933.
  • 6FARCAS A, LESNIC D. The boundary-element method for the detemaination of a heat source dependent on one variable [J].Journal of Engineering Mathematics, 2006,54: 375-388.
  • 7JOHANSSON T, LESNIC D. Determination of a spaeewise dependent heat source [J]. Journal of Computational and Applied Mathematics, 2007,209 : 66-80.
  • 8YAN L, FU C L, YANG F L. The method of fundamental solutions for the inverse heat source problem [J]. Engineering Analysis with Boundary Elements, 2008,32 : 216-222.
  • 9CANNON J R, DUCHATEAU P. Struetural identification of an unknown souree term in a heat equation [J].Inverse Problems, 1998,14 : 535-551.
  • 10KIRSCH A. An Introduction tO the Mathematical Theory of Inverse Problem [M]. New York:Springer, 1996.

共引文献19

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部