期刊文献+

MapReduce架构下的大规模轨迹数据压缩策略 被引量:2

Compression Strategy of Large Scale Trajectory Data Based on MapReduce Architecture
下载PDF
导出
摘要 车辆GPS轨迹数据中蕴含的轨迹信息具有重要的理论和应用价值.随着生活水平的日益提高,越来越多的汽车都配备了GPS设备,海量的GPS轨迹数据随之产生.为了减少车辆轨迹数据的存储空间,提高数据传输和数据分析速度,提出一种MapReduce架构下的大规模轨迹数据压缩策略.该策略首先提出一种基于综合时空特征的开放窗口轨迹数据压缩方法,再结合MapReduce并行计算模型,在各节点上并行压缩大规模轨迹数据.实验结果表明,本文提出的轨迹数据压缩策略虽然在压缩率上略有下降,但是保留了轨迹特征,减少了压缩误差,提高了压缩速度. The vehicle trajectory information of vehicle GPS data has important theoretical and practical value. With the improvement of living standard, more and more cars are equipped with GPS devices and a large amount of GPS trajectory data are produced. In order to reduce the storage space of the vehicle trajectory data and improve the speed of data transmission and data analysis, we put forward a compression strategy of large scale trajectory data based on MapReduce architecture. Firstly, this method proposed an opening window trajectory data compression method based on the comprehensive spatial and temporal characteristics, and then using the MapReduce parallel computing model to compress trajectory data at each node. The experimental results show that the compression strategy proposed in this paper decreases slightly in compression ratio, but significantly retain the features and reduce the compression error and improve the compression speed.
作者 姚楠 彭敦陆
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第5期941-945,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61003031)资助 上海市自然科学基金项目(10ZR1421100)资助
关键词 GPS数据 MAPREDUCE 轨迹压缩 时空特征 开放窗口 GPS data MapReduce trajectory compression temporal characteristics opening window
  • 相关文献

参考文献2

二级参考文献33

  • 1Liao L, Patterson D J, Fox D, et al. Learning and infer- ring transportation routines[J]. Artificial Intelligence, 2007,171(5):311-331.
  • 2Yuan J, Zheng Y, Zhang C, et al. T-drive: Driving direc- tions based on taxi trajectories[C]. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010:99-108.
  • 3Giannotti F, Nanni M, Pinelli F, et al. Trajectory pattern mining[C]. In: Proceedings of the 13th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Da- ta Mining. New York: ACM, 2007:330-339.
  • 4Yu Y, Cao L, Rundensteiner E A, et al. Detecting moving object outliers in massive-scale trajectory streams[C]. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014:422-431.
  • 5Li X, Li Z, Han J, et al. Temporal outlier detection in ve- hicle traffic data[C]. In: Proceedings of the 25th Interna- tional Conference on Data Engineering. Washington: IEEE Computer Society, 2009:1319-1322.
  • 6Ge Y, Xiong H, Liu C, et al. A taxi driving fraud detection system[C]. 2011 IEEE 11 International Conference on Data Mining (ICDM), 2011:181-190.
  • 7Barnett V, Lewis T. Outliers in statistical data[M]. New York: Wiley, 1994.
  • 8Knorr E M, Ng R T. Finding intentional knowledge of dis- tance-based outliers[C]. In: Proceedings of the 25th Inter- national Conference on Very Large Data Bases. Edin- burgh, Scotland: Springer-Verlag, 1999,99:211-222.
  • 9Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identify- ing density-based local outliers[C]. In: Proceedings of 2000 ACM SIGMOD International Conference on Man- agement of Data. New York: ACM, 2000,29(2):93-104.
  • 10Aggarwal C C, Yu P S. Outlier detection for high dimen- sional data[C]. In: Proceedings of 2001 ACM SIGMOD International Conference on Management of Data. Cali- fornia: ACM, 2001,30(2):37-46.

共引文献8

同被引文献24

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部