期刊文献+

面向群组的社交follow推荐方法研究 被引量:5

Group Recommendation Approach for Social Follow Relationship
下载PDF
导出
摘要 目前社交网络中的推荐方法主要是针对单个的个体用户,然而随着日益频繁的社交活动,若干相关用户自然形成了群组,研究如何对于整体的群组用户进行推荐的问题引起了国内外学者的兴趣.本文在优化和改进面向个体的社交follow关系推荐算法的基础上,提出基于矩阵分解和混合策略的群组用户推荐方法.首先,对社交媒体微博中用户-项目矩阵进行奇异值(SVD)分解,然后提出在SVD中加入用户的社交行为和社交关注关系特征,并用随机梯度下降(SGD)算法优化对个体用户推荐的预测评分.其次,在获得个体的推荐评分基础之上,设计一种混合融合策略,该策略融合群组中个体成员的推荐评分形成对该群组的整体评分,从而实现对于群组用户的推荐.最后,实验采用KDDCUP2012竞赛Track1的数据,以平方根误差为评估指标,对比个体推荐中传统SVD模型和本文提出的SVD优化模型,并进一步对比本文提出的混合融合策略与传统的最大满意度、平均满意度及最小忍耐度三种单一融合策略.实验结果表明SVD优化模型优于传统SVD模型,并且采用混合的策略要优于单一的群组融合策略.总体上,本文提出的推荐方法能够有效提高群组推荐的准确度. Currently,recommending for individual users is the main research topic in the social recommendation area. Increasingly frequent social activities make users form social groups. However the study for group recommendation is relatively few and is attracting the interests of researchers in recommender system field. In this paper, we improve the traditional individual recommendation algorithm for recommending social follow relationship, and then put forward a group recommendation approach based matrix decomposition and hybrid aggregation strategy. Firstly,based on SVD model, we analyze the characteristics of these micro-blog users, and add the social behavior and the social relationship of a user into the model. Then SGD algorithm is used to learn the optimal model parameters for individual recommendation. Secondly, for those user groups in social media, we use fusion prediction method based on the recommendation results of our improved SVD algorithm to give recommendations for group users. We aggregate the prediction rating of each member into a group rating by the most pleasure, the average strategy, the least misery and our hybrid aggregation strategy. Our experiments are conducted on the Track 1 of KDDCUP 2012 public data set. Experimental results from the different aggregation strategies show that adding the social behavior and the social relationship to SVD can improve the quality of individual recommendation, and the hybrid aggregation strategy outperforms other single strategies for group recommendation.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第5期946-950,共5页 Journal of Chinese Computer Systems
基金 国家社会科学基金项目(15BGL048)资助 国家"八六三"高技术研究发展计划项目(2015AA015403)资助 湖北省支撑计划项目(2015BAA072)资助
关键词 社交媒体 矩阵分解 群组推荐 融合策略 social media matrix decomposition group recommendation aggregation strategy
  • 相关文献

参考文献2

二级参考文献33

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2LINDEN G,SMITH B,YORK J.Amazon.corn recommendations:Item-to-item collaborative filtering[J].IEEE Internet Computing.2003,7(1):76-80.
  • 3ALI K,WIJNAND V S.TiVo:Making show recommendations using a distributed collaborative filtering architecture[C]//KDD'04:Proceedings of the 10th ACM SIGKDD Intemational Conference on Knowledge Discovery and Data Mining.New York:ACM,2004:394-401.
  • 4GOLDBERG K Y,ROEDER T,GUPTA D,et al.Eigentaste:A constant time collaborative filtering algorithm[J].Information Retrival,2001,4(2):133-151.
  • 5SALAKHUTDINOV R,MNIH A,HINTON G.Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning.New York:ACM,2007:791-798.
  • 6MARLIN B.Collaborative filtering:a machine learning perspective[D].Toronto:University of Toronto,2004.
  • 7SU X,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligenee,2009,2009(4):421-445.
  • 8KOREN Y.Factorization meets the neighborhood:a multifaeeted collaborative filtering model[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2008:426-434.
  • 9HOFMANN T.Latent semantic models for collaborative filtering[J].ACM Transactions on Information Systems,2004,22(1):89-115.
  • 10BLEI D,NGA,JORDANM.Latent diriehlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022.

共引文献62

同被引文献33

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部