期刊文献+

疫苗递送技术的研究进展 被引量:3

The Progress in the Study of Vaccine Delivery Technology
原文传递
导出
摘要 迄今为止疫苗在人类和动物传染性疾病的控制和预防中依然发挥着其他药物种类难以企及的重要作用。疫苗设计成功的基础在于有效地递送抗原物质以诱发强有力的保护性免疫反应,而疫苗递送载体的合理应用可以加强、改善、甚至改变抗原物质所诱发的免疫应答过程,从而带来优化疫苗接种效果,简化免疫接种程序等有益效果。目前研发中常用的疫苗递送载体可以分为生物载体(如病毒与细菌)与化学载体(如微针与脂质体)两类,在不同递送系统使用方面的重要考虑是有效地利用载体的装载能力和相应特性来达到理想的免疫效果。目前疫苗递送技术的快速进展为现代疫苗的发展提供了有力的技术支撑。 Vaccines remain a cornerstone for the control and prevention of infectious disease in both humans and animals so far. Fundamental to the success of vaccination is the efficient delivery of antigenic cargo needed to elicit robust and proactive levels of immune response. The delivery vector can accentuate, improve, even alter the process of immune response. Such a capability would then offer the potential to optimize vaccination outcomes. The reasonable application of the delivery carrier also can improve the prevention efficiency, simplify the immunization program and so on. Vaccine delivery systems currently used in R & D can generally be categorized into biological (e. g. viral or bacterial) and chemical vectors (e. g. microneedle or liposome). An important consideration in adopting delivery technology is effectively using the capabilities and features of the chosen vector to achieve an ideal effect of vaccination. Now the rapid progress of vaccine delivery technology provides a powerful technical support for the development of modern vaccines.
作者 王志明
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2017年第4期98-103,共6页 China Biotechnology
基金 国家"重大新药创制"科技重大专项(2014ZX09201041) 河北省科技计划项目(16272401D)资助项目
关键词 疫苗递送 生物载体 化学载体 脂质体 微针 Vaccine delivery Biological vectors Chemical vectors Liposome Microneedle
  • 相关文献

参考文献2

二级参考文献29

  • 1张瑞平,张兆山.细菌菌蜕作为新颖药物递送体系的研究进展[J].生物化学与生物物理进展,2006,33(7):622-626. 被引量:15
  • 2李小妹,马跃,李安兴,谢明权,张哓瑜.禽致病性大肠杆菌(APEC)菌蜕的制备研究[J].中国预防兽医学报,2007,29(6):423-427. 被引量:11
  • 3Witte A, Wanner G, Sulzner M, et al. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch Microbiol, 1992, 157 (4) : 381-388.
  • 4Ulrike B M, Petra W, Chakameh A,et al. Bacterial ghosts as antigen delivery vehicles. Advanced Drug Delivery Reviews, 2005, 57 (9) : 1381-1391.
  • 5Jechlinger W, Szostak M P, Witte A, et al. Altered temperature induction sensitivity of the lambda pR,/ci857 system for controlled gene E expression in Eseherichia coli. FEMS Microbiol Lett, 1999, 173 (2): 347-352.
  • 6Seung J P, Seok-J L, Kim Ki-Hong, et al. High cell density fed- batch fermentation for the production of recombinant E. coli K-12 ghost vaccine against streptococcal disease. Biotechnology and Bioprocess Engineering, 2011, 16 (4) : 733-738.
  • 7胡本钢.应用抗菌肽一超高压制备肺炎克雷伯菌和副猪嗜血杆菌菌影方法的建立.吉林:吉林大学,2012.
  • 8Amara A A, Salem-Bekhit Mounir M, Alanazi Fars K. Sponge- Like: a new protocol for preparing bacterial ghosts. The Scientific World Journal, 2013, Article ID 545741, 7 pages.
  • 9Haidinger W, Mayr U B, Szostak M P, et al. Escherichia coli ghost production by expression of lysis gene E and staphylocoeeal nuelease. Applied and Environmental Microbiology, 2003, 69 (10) : 6106-6113.
  • 10Eko F O, Sehukovskaya T, Lotzmanova E Y, et al. Evaluation of the protective efficacy of vibrio eholerae ghost ( VCG ) candidate vaccines in rabbits. Vaccine,2003, 21(25-26): 3663-3674.

共引文献12

同被引文献35

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部