期刊文献+

种番鸭源巴泰病毒的分离及鉴定 被引量:2

Identification of Batai virus isolated from breeding Muscovy duck
下载PDF
导出
摘要 为确定引起种番鸭产蛋下降的病原,本研究应用透射电镜负染及理化特性测定等方法对1株分离自表现产蛋下降的283日龄种番鸭卵巢的病毒(ZJ1408株)进行研究,结合RT-PCR检测及序列分析结果,确定所分离病毒为布尼亚病毒属的巴泰病毒(BATV)。该病毒可在鸭胚成纤维细胞和Vero增殖并引起细胞病变。对病毒核蛋白部分序列测定与分析发现,该病毒与已发布的鸭源分离株ZJ14、牛源分离株XQ-B及NM/12核苷酸序列同源性在99.5%以上,与近年来报道的基因重配变异株Ngari的同源性为92%左右;遗传进化分析表明,该病毒株与早期蚊虫源BATV分离株MM2222、G-20217及804986等同处于亚-非基因型进化分支。以上结果表明我国饲养的鸭群存在BATV感染,这提示应充分重视该类人畜共患病病原在家禽中流行的监测。 To investigate the infectious agent responsible for egg-dropping in duck, a isolate of virus (named as ZJ1408) isolated from 283-day old breeding Muscovy ducks with egg-dropping was assayed by using negative-stained transmission electron microscopy and analysis on chemical and physical properties. Combined with the results of virus detection and sequence analysis of the amplicon, the virus isolate was identtiffied as Batai virus (BATV), a member of bunyavirus genus. The virus was able to proliferate and induce cytopathic effect (CPE) in duck embryo fibroblasts (DEF) and Vero. The S gene of ZJ1408 nucleotide sequence was identical up to 99.5% to that of duck-origin virus strain ZJ14, bovine-origin virus strain XQ-B and NM/12, and 92% to the recently isolated and identified reassortant Ngari strain. Phylogenetic tree showed that the ZJ1408 combined with the mosquito-origin strain MM2222, G-20217, and 804986 integrated into the Afro-Asian genotype of BATV. These results showed that the BATV had already existed in the duck flocks, therefore it is important to highlight the epidemic monitoring on this zoonosis pathogen in domestic poultry.
出处 《中国预防兽医学报》 CAS CSCD 北大核心 2017年第4期315-318,共4页 Chinese Journal of Preventive Veterinary Medicine
基金 福建省属公益类科研院所基本科研项目(2017R1023-16)
关键词 种番鸭 巴泰病毒 分离 鉴定 breeding muscovy duck batai virus isolation identification
  • 相关文献

参考文献1

二级参考文献8

  • 1Janeway C A, Medzhitov R. Innate immune recognition[J]. Annu Rev Immunol, 2002, 20: 197-216.
  • 2Fitzgerald K A, McWhirter S M, Faia K L, et al. IKK epsilon and TBK1 are essential components of the IRF3 signaling pathway[J]. Immunol, 2003, 4(1): 491-496.
  • 3Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response[J]. Immunity, 2005, 23(1): 19-28.
  • 4Karpala A J, Stew of chicken Mda5 art C, McKay J, et al activity: regulation Characterization of IFN-beta in the absence of RIG-I functionality[J]. J Immunol, 2011,186(9): 5397-5405.
  • 5Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses[J]. Nature, 2006, 441(7089): 101-105.
  • 6Barber M R, Aldridge J R, Webster R G, et al. Association of RIG-I with innate immunity of ducks to influenza[J]. Proc Natl Acad Sci USA, 2010, 107(13): 5913-5918.
  • 7Childs K, Stock N, Ross C, A et al. MDA-5, but not RIG-I, is a common target for paramyxovirus V proteins[J]. Virology, 2007, 359(1): 190-200.
  • 8邓夏珩,郭军.MDA5与抗病毒感染信号转导[J].细胞与分子免疫学杂志,2011,27(11):1258-1260. 被引量:5

共引文献5

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部