期刊文献+

基于Rényi信息增量和改进QPSO算法的多传感器协同分配 被引量:3

Multi-sensor Coordinated Allocation Based on Rényi Divergence and Improved QPSO Algorithm
下载PDF
导出
摘要 对防空作战目标识别阶段中的传感器管理问题进行了研究,提出基于Rényi信息增量的多传感器管理调度方案。首先利用D-S证据理论进行融合推理,得出不同目标与不同传感器配对时的Rényi信息增量;然后,建立了基于系统总Rényi信息增量最大化的传感器分配模型,此外,对量子粒子群智能优化(QPSO)算法进行自适应改进,能够对分配模型进行快速求解;最后,通过仿真实验验证了算法的合理性和有效性。 Abstract: Aiming at the multi-sensor management problem in target recognition stage under complex aerial defense combat environment, a new multi-sensor scheduling method is proposed based on R6nyi divergence. Firstly, the D-S evidence theory is applied to obtain the R6nyi divergence of different sensors matched with different targets. Then, the sensor allocation model based on the maximized total R6nyi divergence is established. Besides, the Quantum Particle Swarm Optimization (QPSO) algorithm is improved in order to quickly solve the management model. Finally, the experiments show that the improved algorithm is feasible and effective.
出处 《电光与控制》 北大核心 2017年第5期15-19,共5页 Electronics Optics & Control
基金 军内科研基金重点资助项目(ZS2015070132A12009)
关键词 多传感器管理 目标识别 Rényi信息增量 证据理论 量子粒子群 Key words: multi-sensor management target recognition R6nyi divergence evidence theory quantum particle swarm optimization
  • 相关文献

参考文献6

二级参考文献53

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3王峰.传感器管理算法及其应用[D].西安;西北工业大学,2005.
  • 4Van Haarst T V,van Norden W,Bolderheij F.Automatic sen-sor management:challenges and solutions[C]∥Proc.of theSPIE Optics and Photonics in Global Homeland Security,2008,6945:1-11.
  • 5Weismuller S P,Santhanam V,Sampigethaya R G,et al.Challengeand solutions for embedded and networked aerospace software sys-tems[J].Proceedings of the IEEE,2010,98(4):621-634.
  • 6Xiong N,Svensson P.Multi-sensor management for informationfusion:issues and approaches[J].Information Fusion,2002(3):163-186.
  • 7Hintz K J,Mcvey E S.Multi-process constrained estimation[J].IEEETrans.on Systems,Man and Cybernetics,1991,21(1):434-442.
  • 8Kreucher C M,Hero A O,Kastella K D,et al.An information-based approach to sensor management in large dynamic networks[J].Proceedings of the IEEE,2007,95(5):976-999.
  • 9Ji Q,Zhang Y.Efficient sensor selection for active informationfusion[J].IEEE Trans.on Systems,Man,and Cybemetics,2010,40(3):719-728.
  • 10Kolba M P,Collins L M.Sensor management using a new frame-work for observation modeling[C]∥Proc.of the SPIE Signal Pro-cessing and Statistical Classification,2009,7303:1-26.

共引文献24

同被引文献19

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部