期刊文献+

低维碳和氮化硼材料的物理力学研究进展

Research Progress in Physical Mechanics of Low-dimensional Carbon and Boron Nitride Materials
原文传递
导出
摘要 碳纳米管、石墨烯和六方氮化硼等低维材料具有优异的力学和电学性质,已经引起广泛的科学兴趣.然而由电荷、分子轨道、电子结构和自旋态构成的低维材料的局域场与力学变形、机械运动和物理化学环境等外场间往往存在强烈耦合,这导致低维材料会呈现出新颖独特的物理力学性能.论文对近年来碳纳米管、石墨烯和六方氮化硼等低维材料的力学性能、力电耦合与器件原理、表面和界面结构性能调控、层间相互作用、能量耗散和摩擦等物理力学方面的研究进展进行了简要综述,并讨论了利用低维材料多场耦合特性和结构性能关联发展新型功能器件的方法和途径,以及纳米力学和纳尺度物理力学的前沿和发展趋势. Low-dimensional materials such as carbon nanotubes, graphene and hexagonal boron nitride (h-BN) have attracted extensive scientific interest and attention, and become a hot research field for their unique and exceptional mechanical, electrical and thermal properties. The local fields of low-dimensional materials that consist of charges, molecular orbitals, electronic structures and spin states are usually cou- pled with external mechanical deformation and movement, as well as physical and chemical environment, which could lead to novel characteristics and behaviors significantly different from those of the correspond- ing bulk states. Here we make a brief review on recent progress of mechanical behaviors, mechanical-elec- tric coupling and device mechanisms, tuning structures and properties of surfaces and interfaces, interlayer interactions, energy dissipation and friction of carbon nanotubes, graphene and h BN materials, and also discuss the possibilities and feasible routes to develop novel functional devices by utilizing the multi-field coupling and structure-properties correlation of low-dimensional materials, and the advances and develop- ment trends of nano mechanics and physical mechanics.
出处 《固体力学学报》 CSCD 北大核心 2017年第2期124-145,共22页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(11472131,11622218) 江苏省自然科学基金杰出青年基金(BK20160037)资助
关键词 碳纳米管 石墨烯 六方氮化硼 物理力学 多场耦合 表界面 carbon nanotube, graphene, hexagonal boron nitride, physical mechanics, multiple fieldcoupling, surface and interface
  • 相关文献

参考文献2

二级参考文献30

  • 1Kim C, Kim B. Effect of electric field on the electronic structures of carbon nanotubes. Appl Phys Lett, 2001,79:1187~1189.
  • 2Leach AR. Molecular Modelling. London: Addison Wesley Longman Limited, 1996. 54~79.
  • 3Stewart J JR Optimization of parameters for semiempirical method I. Method. J Comput Chem, 1989,10:209~220.
  • 4Stewart J JR. Optimization of parameters for semiempirical method II. Applications. J Comput Chem,1989,10:221~264.
  • 5Cheng HM. Carbon Nanotubes Synthesis, Microstructure, Properties and Application. Beijing: Chem Tech Publisher, 2002. 203~332.
  • 6Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon, 1995, 33:925~930.
  • 7Treacy MM, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996, 381:678~680.
  • 8Falvo MR et al. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389:582~584.
  • 9Wong E, Sheehan P, Lieber C. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277:1971~1975.
  • 10Yao N, Lordi V. Young's modulus of single-walled carbon nanotubes. J Appl Phys, 1998, 84:1939~1943.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部