期刊文献+

云环境中基于cache负载实时定噪的同驻分析方法

Co-residency Detection Scheme Based on Cache Load and Real Time Noise Ascertainment in Cloud
下载PDF
导出
摘要 云计算具有使用便捷、可按需定制服务、优化资源利用等特点,成为提供外包服务的主要计算模式。云环境中的虚拟机侧通道攻击是云计算的主要潜在威胁之一,同驻是云环境中侧通道攻击的前提。针对如何在多租户云环境下进行同驻检测,提出基于链式结构的Prime-Probe测量cache负载方法 MCLPPLS和针对云环境噪声复杂多变问题的实时噪声分析机制RTNAM。结合MCLPPLS与RTNAM提出一种新型的同驻检测分析方法。实验表明,该方法能减少突发噪声对同驻检测的干扰,有较高的同驻检测正确率及较低的同驻检测时耗,表现出良好的性能。 Cloud computing has the advantages of convenient use, designing customized service on need base, optimizing resource utilization etc. It has become the main computing model for outsourcing services. The side channel attack of vir- tual machines in the cloud environment is one of the main potential threats of cloud computing, and the co-residency is the premise of the side channel attack in the cloud environment. In view of how to carry out the co-residency detection in multi tenant cloud environment, this paper presented the measurement of cache load by Prime-Probe with linked struct (MCLPPLS) and real time noise ascertainment mechanism(RTNAM). Based on MCLPPLS and RTNAM, we proposed a new method for the analysis of the co-residency detection. The experimental results show that the method can reduce the interference of the burst noise to the co-residency detection, and has higher true detection rate and lower detection time,which shows good performance.
出处 《计算机科学》 CSCD 北大核心 2017年第5期105-110,115,共7页 Computer Science
基金 国家自然科学基金项目(61640203 61363003) 广西自然科学基金项目(2016GXNSFAA380115) 国家科技支撑计划课题(2015BAH55F02) 广西大学科研基金项目(XBZ120257 XJZ151321)资助
关键词 云计算 侧通道攻击 同驻检测 Cloud computing, Side channel attacks, Co-residency detection
  • 相关文献

参考文献4

二级参考文献57

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:896
  • 2LiDeyi,LiuChangyu,LiuLuying.Study on the Universality of the Normal Cloud Model[J].工程科学(英文版),2005,3(2):18-24. 被引量:8
  • 3Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 4Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 5Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 6Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 7Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 8Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 9Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 10Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.

共引文献1317

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部