期刊文献+

浅水波传播问题的动力学分析与数值计算

Dynamical Analysis and Numerical Computation of Shallow Water Wave Propagation
下载PDF
导出
摘要 b族方程概括了一大类浅水波动力学问题,研究发现其中的Camassa-Holm方程(b=2)和Degasperis-Procesi方程(b=3)均存在稳定传播的尖波解。在已有b族方程统一对称形式的基础上,针对b=0这一特殊情形,构造了一种等价于多辛Box格式的新隐式多辛格式,用于探索这一特殊情形下b族方程是否存在稳定传播的尖波解。通过数值模拟,一方面,验证了构造的隐式多辛格式具有很好的保结构性能和良好的长时间数值稳定性;另一方面,从数值模拟结果中发现在b=0这一特殊情形下,b族方程不存在稳定传播的尖波解。 The b-family equation, which contains a general family of shallow water wave equations with the different values of b, has shown the so-called peaked wave solutions with the cases when b = 2 (Camassa-Holm equation) and b = 3 (Degasperis-Procesi equation). To explore whether a special case when b = 0 exists the stable peaked so- lution, based on the multi-symplectic form, the multi-symplectic Box scheme to construct a new implicit scheme is applied focusing on this case. The numerical experiments show that the constructed scheme has well structure-pre- serving property and good long time numerical stability. Furthermore, we can also find that there do not exist the stable propagation of peaked solution from the numerical results in the special case when b = 0.
作者 都琳 张宇
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第2期321-325,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(11672233 11302169 11372253) 陕西省自然科学基金(2015JM1026) 航天支撑技术基金(2015-HT-XGD)资助
关键词 b族方程 多辛方法 尖波解 守恒律 b-family equation multi-symplectic method peaked solution conservation law
  • 相关文献

参考文献1

二级参考文献18

  • 1胡伟鹏,邓子辰,李文成.膜自由振动的多辛方法[J].应用数学和力学,2007,28(9):1054-1062. 被引量:12
  • 2Bridge T J, Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[ J]. Physics Letters A ,2001,284(4/5 ) : 184-193.
  • 3Moore B E, Reich S. Multi-symplectic integration methods for Hamiltonian PDEs[ J]. Future Generation Computer Systems, 2003,19(3) : 395-402.
  • 4Bridges T J. Multi-symplectic structures and wave propagation[J] .Mathematical Proceedings of the Cambridge Philosophical Society, 1997,121 ( 1 ) : 147-190.
  • 5Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations [J ]. Computational Physics, 2000,157 (2) : 473-499.
  • 6Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic preissmann scheme for the KdV equation[ J]. Journal of Physics, A ,Mathematical and General,2000,33(18) :3613-3626.
  • 7Islas A L, Schober C M. Multi-symplectic methods for generalized Schrodinger equations[ J]. Future Generation Computer Systems ,2003,19(3) :403-413.
  • 8Hirota R. Exact envelope-soliton solutions of a nonlinear wave [J ]. Journal of Mathematical Physics, 1973,14 ( 7 ) : 805- 809.
  • 9Hirota R. Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices[ J]. Journal of Mathematical Physics, 1973,14(7) :810-814.
  • 10Nimmo J J C,Freeman N C.A method of obtaining the N-soliton solutions of the Boussinesq equation in terms of a Wronsldan[J]. Physics Letters A, 1983,95( 1 ) :4-6.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部